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We denote (x0, x1, ..., xn+1) a point in the (n + 1) + 1 dimensional Minkowski
space endorsed with the metric

ds2 = −dx2
0 + dx2

1 + ...+ dx2
n+1

Let
x0 = t, x1 = x, x2 = φ1(t, x), ..., xn+1 = φn(t, x)

be a two dimensional time like surface. Then the induced metric on the surface
is

d∗s
2 = −dt2 + dx2 + d(φ1)

2 + ...+ d(φn)
2

= −(1− (φt)
2)dt2 + (1 + (φx)

2)dx2 + 2φt · φxdxdt

where φ = (φ1, ..., φn)
T , φt or φx denote partial dedifferentiation with respect

to t or x respectively and · denotes inner product in Rn. Thus, it is easy to see
that the area of the surface is∫ ∫ √

1− (φt)2 + (φx)2 − (φt)2(φx)2 + (φt · φx)2dxdt
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An extremal surface is defined to be the extremal point of the area functional,
hence it satisfies the Euler-Lagrange equations

(
(1 + (φx)

2)φt − (φt · φx)φx√
1− (φt)2 + (φx)2 − (φt)2(φx)2 + (φt · φx)2

)t

−(
(1− (φt)

2)φx + (φt · φx)φt√
1− (φt)2 + (φx)2 − (φt)2(φx)2 + (φt · φx)2

)x = 0 (4)

We consider the Cauchy problem for system (4) with initial data

φ(0, x) = h(x), φt(0, x) = g(x)

where h′ and g are vector valued C1 functions.
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Let
u = φx , v = φt

Then, Eq.(4) can be equivalently rewritten as a first order systems of conserva-
tion laws for the unknown U(t, x) = (u(t, x), v(t, x)) as follows

ut − vx = 0

(
(1 + u2)v − (u · v)u√

1− v2 + u2 − v2u2 + (u · v)2
)t − (

(1− v2)u+ (u · v)v√
1− v2 + u2 − v2u2 + (u · v)2

)x = 0

The initial condition then becomes (u(0, x), v(0, x)) = U0(x) = (h′(x), g(x)).
This is an interesting model in Lorentian geometry.
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In [17] they showed that system can be reduced to
ut − vx = 0

vt −
2(u · v)
1 + u2 vx −

1− v2

1 + u2ux = 0

They found that it enjoys many interesting properties:nonstrictly hyperbolic-
ity, constant multiplicity of eigenvalues, linear degeneracy of all characteristic
fields, richness, etc. The system have two n-constant multiple eigenvalues:

λ± =
1

1 + u2(−(u · v)±
√
4(u, v))

where 4(u, v) = 1− v2 + u2 − u2v2 + (u · v)2 > 0. They also proved

|λ±(t, x)| ≤ 1

http://pankejia.yculblog.com
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Let
Ri = vi + λ+ui, (i = 1, ..., n)

Si = vi + λ−ui, (i = 1, ..., n)

then they satisfies the following systems
∂tλ+ + λ−∂xλ+ = 0

∂tRi + λ−∂xRi = 0 (i = 1, ..., n)

∂tλ− + λ+∂xλ− = 0

∂tSi + λ+∂xSi = 0 (i = 1, ..., n)

t = 0 : λ+(0, x) = Λ+(x), λ−(0, x) = Λ−(x),

Ri(0, x) = R0
i (x), Si(0, x) = S0

i (x)

Then it was proved that above system admits a global classical solution for all
t ∈ R+, provided that U0 is C1 and the strictly hyperbolic condition

δ = inf
x∈R

Λ+(x)− sup
x∈R

Λ−(x) > 0 (5)

is satisfied.

ui(t, x) =
Ri(t, x)− Si(t, x)

λ+(t, x)− λ−(t, x)
, vi(t, x) =

λ+Si(t, x)− λ−Ri(t, x)

λ+(t, x)− λ−(t, x)

http://pankejia.yculblog.com
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Theorem A. Suppose that (5) is satisfied, then the cauchy problem (4) admits a
unique global C2 solution φ = φ(t, x) on R+ ×R. Moreover, it holds that

4(φx(t, x), φt(t, x)) > 0, ∀(t, x) ∈ R+ ×R

Under the following assumptions:

sup
x∈R

{|h′′(x)|+ |g′(x)|} .
= M̄ <∞,

∫ +∞

−∞
|h′(x)|+ |g(x)|dx .

= N̄1 <∞∫ +∞

−∞
|h′′(x)|+ |g′(x)|dx .

= N̄2 <∞

M̄0 = sup
x∈R

{|h′(x)|+ |g(x)|}

http://pankejia.yculblog.com
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Firstly we consider the Cauchy problem:

• Consider Cauchy problem of the first order general quasilinear hyperbolic
systems

∂u

∂t
+ A(u)

∂u

∂x
= B(u),

u(0, x) = f(x)

�The existence of the global classical solutions:
Bressan [1]Indiana University Mathamatics Journal (1988)
Li [2] (published in the United States with John Wiley & Sons, 1994.)
Li, Zhou and Kong [3] Comm.PDE (1994). [4]Nonl.Anal.(1997)
Kong [5] ,
Zhou [6] Chin. Ann. Math. (2004)

� Asymptotic behavior:
Kong and Yang [7] Comm in Part Diff Eqs. (2003)
Dai and Kong [8] Chin. Ann. Math. B (2006), [9] (preprint).
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FFIn the following we consider the following diagonalizable quasilinear
hyperbolic systems

∂ui

∂t
+ λi(u)

∂ui

∂x
= 0 (1)

where u = (u1, ..., un)
T is the unknown vector-valued function of (t, x). λi(u)

is given C2 vector-valued function of u and is linearly degenerate, i.e.

∂λi(u)

∂ui
≡ 0

and the system (1) is strictly hyperbolic, i.e.

λ1(u) < ... < λn(u)

Suppose that there exists a positive constant δ such that,

λi+1(u)− λi(v) ≥ δ, i = 1, ..., n− 1.

http://pankejia.yculblog.com
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Consider the cauchy problem for the system (1) with the following initial data

t = 0 : u = f(x)

where f(x) is a C1 vector-valued function of x. The global existence of the
classical solutions is well-known see Li [2].

http://pankejia.yculblog.com
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Assumptions
sup
x∈R

|f ′(x)| .= M <∞∫ +∞

−∞
|f(x)|dx .

= N1 <∞∫ +∞

−∞
|f ′(x)|dx .

= N2 <∞

sup
x∈R

|f(x)| .= M0

http://pankejia.yculblog.com
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Theorem 1.1. Under the assumptions of above, there exists a unique C1 vector-
valued function φ(x) = (φ1(x), ..., φn(x))

T such that,

u(t, x) −→
n∑

i=1

φi(x− λi(0)t)ei, t −→∞

where
ei = (0, ..., 1i, 0, ..., 0)T

Moreover, φi(x)(i = 1, ..., n) is global Lipschitz continuous. Furthermore, If
system (1) is rich and the derivative of the initial data f ′(x) isglobal ρ-hölder
continuous, where 0 < ρ ≤ 1, i.e. there exists a positive constant κ independent
of α, β ∈ R such that,

|f ′(α)− f ′(β)| ≤ κ|α− β|ρ

Then φ′i(x) (i = 1, ..., n) satisfies

|φ′i(α)− φ′i(β)| ≤ CM̃(|α− β|ρ + |α− β|)

http://pankejia.yculblog.com
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Lemma 4.1. Under the assumptions above, the limit

λ−(t, x) −→ ψ̃(x− t), t −→∞

exists and for any α, β ∈ R, we have

|ψ̃(α)− ψ̃(β)| ≤ CM̄ |α− β|

Moreover,
|ψ̃(α)| ≤ 1

Remark 4.1. Using the similar method, we can get the following estimate

Si(t, x) −→ φ̃i(x− t), exist and |φ̃i(α)− φ̃i(β)| ≤ CM̄ |α− β|

λ+(t, x) −→ ψ(x+ t), exist and |ψ(α)− ψ(β)| ≤ CM̄ |α− β|

Ri(t, x) −→ φ̌i(x+ t), exist and |φ̌i(α)− φ̌i(β)| ≤ CM̄ |α− β|

Moreover,
|ψ(α)| ≤ 1, |φ̃i(α)|, |φ̌i(α)| ≤ 1 + CM̄N̄1

http://pankejia.yculblog.com
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Then

lim
t−→∞

ui(t, x) = lim
t−→∞

φ̌i(x+ t)− φ̃i(x− t)

ψ(x+ t)− ψ̃(x− t)

lim
t−→∞

vi(t, x) = lim
t−→∞

ψ(x+ t)φ̃i(x− t)− ψ̃(x− t)φ̌i(x+ t)

ψ(x+ t)− ψ̃(x− t)

Then, we can get
when x ≥ 0

lim
t−→∞

ui(t, x) =
−φ̃i(x− t)

1− ψ̃(x− t)

.
= Φi(x− t), i = 1, ..., n

lim
t−→∞

vi(t, x) =
φ̃i(x− t)

1− ψ̃(x− t)

.
= −Φi(x− t), i = 1, ..., n

when x ≤ 0

lim
t−→∞

ui(t, x) =
φ̌i(x+ t)

1 + ψ(x+ t)
.
= Ψi(x+ t), i = 1, ..., n

lim
t−→∞

vi(t, x) =
φ̌i(x+ t)

1 + ψ(x+ t)
.
= Ψi(x+ t), i = 1, ..., n

http://pankejia.yculblog.com
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So we can conclude

ui(t, x) −→ Φi(x− t) + Ψi(x+ t)

vi(t, x) −→ −Φi(x− t) + Ψi(x+ t)

We also have conclusion that Φi(α) and Ψi(α)(i = 1, ..., n) are Lipschitz
continuous.

http://pankejia.yculblog.com
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Theorem 1.2. Under the assumptions of above, furthermore, suppose ini-
tial data satisfies (5). There exist unique C1 vector-valued functions Φ(x) =

(Φ1(x), ...,Φn(x)) and Ψ(x) = (Ψ1(x), ...,Ψn(x)) such that,

(φi)x −→ Φi(x− t) + Ψi(x+ t), t −→∞ i = 1, ..., n

(φi)t −→ −Φi(x− t) + Ψi(x+ t) t −→∞ i = 1, ..., n

Moreover Φi(x) and Ψi(x)(i = 1, ..., 2n) are global Lipschitz continuous. Ex-
actly, there exists a positive constant M̃ only depending on M̄, N̄1, N̄2. It holds
that

|Φi(α)− Φi(β)| ≤ CM̃ |α− β|

|Ψi(α)−Ψi(β)| ≤ CM̃ |α− β|

Furthermore, If the initial data h′′, g′ are global ρ-hölder (0 < ρ ≤ 1) continu-
ous, i.e. there exists a positive constant κ independent of α, β ∈ R such that,

|h′′(α)− h′′(β)|+ |g′(α)− g′(β)| ≤ κ|α− β|ρ

then, Φ′
i(x) and Ψ′

i(x) satisfy

|Φ′
i(α)− Φ′

i(β)|+ |Ψ′
i(α)−Ψ′

i(β)| ≤ CκM̃ρ|α− β|ρ + CM̃ |α− β|

http://pankejia.yculblog.com


Home Page

Title Page

JJ II

J I

Page 18 of 55

Go Back

Full Screen

Close

Quit

FFInitial-boundary value problem for the equation of time-like extremal
surface in Minkowski space
We only consider the initial-boundary value problem with Neumann boundary
condition 

ut − vx = 0

vt −
2(u · v)
1 + u2 vx −

1− v2

1 + u2ux = 0

t = 0 : u = f ′(x), v = g(x)

x = 0 : u = h(t)

(1.16)

http://pankejia.yculblog.com
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Suppose that U0, h are C1 functions with bounded C1 norm and the initial con-
ditions satisfy

sup
x∈R+

Λ−(x) ≤ −a < 0 < b ≤ inf
x∈R+

Λ+(x) (1.25)

Without loss of generality, we assume a < b. (Otherwise, we can always replace
a by a smaller positive number). If the Neumann boundary data is sufficiently
small, for example

|h(t)| ≤ b− a

3
(1.26)

Then we have the following global existence result for the initial-boundary
value problem (1.5)-(1.7)

http://pankejia.yculblog.com
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Theorem 1.1 Suppose that the initial data and Neumann boundary data satisfy
(1.25), (1.26), the conditions of C2 compatibility (1.9) are satisfied, then the
initial-boundary value problem (1.5)-(1.7) admits a unique global C2 solution
φ = φ(t, x) on R+ ×R+.
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Similarly, we suppose U0, H ′ are C1 functions with bounded C1 norm and the
initial conditions satisfy

sup
x∈R+

Λ−(x) ≤ −a < 0 < b ≤ inf
x∈R+

Λ+(x)

Without loss of generality, we assume a < b. If the first derivative of Dirichlet
boundary data is sufficiently small, for example

|H ′(t)| ≤ b− a (1.27)

The conditions of C2 compatibility are satisfied. i.e.

f(0) = H(0), H ′(0) = g(0) (1.28)

and

H ′′(0)− 2f ′(0) · g(0)

1 + f ′2(0)
g′(0)− 1− g2(0)

1 + f ′2(0)
f ′′(0) = 0 (1.29)

Then we have the following global existence result

http://pankejia.yculblog.com
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Theorem 1.2 Suppose the above assumptions (1.25) and (1.27)-(1.29) are
satisfied, then the initial-boundary value problem (1.5), (1.6) and (1.8) admits a
unique global C2 solution φ = φ(t, x) on R+ ×R+.

http://pankejia.yculblog.com
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If we also suppose that the initial and boundary datum satisfy the following
assumptions:

sup
x∈R+

{|f ′′(x)|+ |g′(x)|} .
= N <∞ (1.30)∫ +∞

0
|f ′(x)|+ |g(x)|dx .

= N1 <∞ (1.31)∫ +∞

0
|f ′′(x)|+ |g′(x)|dx .

= N2 <∞ (1.32)

sup
x∈R+

{|f ′(x)|+ |g(x)|} = N0 (1.33)

sup
t∈R+

{|h′(t)|} .
= M <∞ (1.34)∫ +∞

0
|h(t)|dt .= M1 <∞ (1.35)∫ +∞

0
|h′(t)|dt .= M2 <∞ (1.36)

Based on the existence of the global classical solutions, we also prove the
following Theorem:

http://pankejia.yculblog.com
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Theorem 1.3 Under the assumptions of Theorem 1.1 and above, there exists a
unique C1 vector-valued function Φ(x) = (Φ1(x), ...,Φn(x)) such that

((φi)x, (φi)t) −→ (Φi(x− t),−Φi(x− t)) i = 1, ..., n (1.37)

http://pankejia.yculblog.com
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Similarly, under the assumptions that

sup
x∈R+

{|f ′′(x)|+ |g′(x)|} .
= N <∞

∫ +∞

0
|f ′(x)|+ |g(x)|dx .

= N1 <∞∫ +∞

0
|f ′′(x)|+ |g′(x)|dx .

= N2 <∞

sup
x∈R+

{|f ′(x)|+ |g(x)|} = N0

sup
t∈R+

{|H ′′(t)|} .
= M <∞ (1.38)∫ +∞

0
|H ′(t)|dt .= M1 <∞ (1.39)∫ +∞

0
|H ′′(t)|dt .= M2 <∞ (1.40)

We have the following Theorem

http://pankejia.yculblog.com
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Theorem 1.4 Under the assumptions of Theorem 1.2 and above, there exists a
unique C1 vector-valued function Ψ(x) = (Ψ1(x), ...,Ψn(x)) such that

((φi)x, (φi)t) −→ (Ψi(x− t),−Ψi(x− t)) i = 1, ..., n (1.41)
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FKey idea of the proof
Lemma 2.1 Under the assumptions of (1.9), (1.25) and (1.26), system (1.20) is
strictly hyperbolicity. Furthermore, on the domain D we have

λ−(t, x) ≤ −a < 0 < b ≤ λ+(t, x) (2.3)
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Proof: For any fixed (t, x) ∈ D, we draw the forward characteristic
C̃1 : x = x1(t) through this point. There are only two possibilities:

Case 1: The forward characteristic C̃1 : x = x1(t, β) intersects x axis at a point
(0, β). By the second equation of system (2.1), λ−(t, x) is a constant along any
given forward characteristic, then we have

λ−(t, x) = Λ−(β) (2.4)

Noting (1.25)
λ−(t, x) ≤ −a ∀ (t, x) ∈ D (2.5)

In the similar way, we draw the backward characteristic C̃2 : x = x2(t, α)

intersects x axis at a point (0, α). Along any given backward characteristic
λ+(t, x) is a constant

λ+(t, x) = Λ+(α) (2.6)

Then
b ≤ λ+(t, x) ∀ (t, x) ∈ D (2.7)

http://pankejia.yculblog.com
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Case 2: The forward characteristic C̃1 : x = x1(t) intersects t axis at a point
(γ, 0) and the backward characteristic C̃2 : x = x2(t) passing through (γ, 0)

intersects x axis at a point (0, α), where C̃2 : x = x2(t) satisfies

dx2(t)

dt
= λ−(t, x2(t, α)), x2(0, α) = α

Similarly, we can get
λ−(t, x) = λ−(γ, 0) (2.8)

λ+(γ, 0) = Λ+(α) (2.9)

Then
λ−(t, x) + Λ+(α) =

−2(h · v)
1 + |h|2

(2.12)
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Let θ ∈ [0, π] is the angle between vectors h and v. We have h · v = |h||v| cos θ.
Then, Equation (2.10) can be rewritten as

(1 + |h|2)Λ+(α) + |h||v| cos θ =
√

1− |v|2 + |h|2 − |v|2|h|2 + |h|2|v|2 cos2 θ

(2.13)

Then

(1+|h|2)2Λ2
+(α)+(1+|h|2)|v|2+2(1+|h|2)Λ+(α)|h||v| cos θ = 1+|h|2 (2.14)

Dividing (2.14) by 1 + |h|2 leads to

(1 + |h|2)Λ2
+(α) + |v|2 + 2Λ+(α)|h||v| cos θ = 1 (2.15)

Noting θ ∈ [0, π], then | cos θ| ≤ 1

(1 + |h|2)Λ2
+(α) + |v|2 − 2Λ+(α)|h||v| ≤ 1

(|v| − |h|Λ+(α))2 ≤ 1− Λ2
+(α)
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Notice that the initial data satisfies (1.25), we can get

|v| ≤ Λ+(α)|h|+
√

1− Λ2
+(α) (2.16)

Thus
|v| ≤ |h|+ 1 (2.17)

By Equation (2.12), we have

−λ−(t, x) = Λ+(α) +
2|h||v| cos θ

1 + |h|2
(2.18)

≥ Λ+(α)− 2|h||v|
1 + |h|2

Noting (1.25) and (2.17)

−λ−(t, x) ≥ b− 2|h|(|h|+ 1)

1 + |h|2
(2.19)

On the other hand, the Neumann boundary data satisfies (1.26), then

2|h|(|h|+ 1)

1 + |h|2
≤ b− a

Therefore
λ−(t, x) ≤ −a (2.20)
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Lemma 2.2 Let Ri, Si be as system (1.20), then

{|Ri(t, x)|, |Si(t, x)|} ≤ C (2.21)

where C is a positive constant only depending on a, b,N0.
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To estimate the first derivatives of the solutions of system (1.20), we consider a
linear system ∂S

∂t + w(t, x)∂S
∂x = 0

∂Y
∂t + z(t, x)∂Y

∂t = 0
(2.32)

where z, w are regarded as given smooth functions. However, z, w are not arbi-
trary given. S = z, Y = w itself is a solution of system(2.32). Assume that on
the domain under consideration

w(t, x)− z(t, x) ≥ δ > 0 (2.33)

where δ is positive constant. Then w and z are constant along characteristics
respectively. Under these assumptions, system (2.32) enjoys the following
remarkable properties:
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Lemma 2.3 Let

T1 =
∂

∂t
+ w(t, x)

∂

∂x
, T2 =

∂

∂t
+ z(t, x)

∂

∂x
(2.34)

Then
[T1, T2] = T1T2 − T2T1 = 0 (2.35)

For any Lipschitz continuous functions F and G, System (1.20) implies the con-
servation laws: 

(
F (S)

w − z
)t + (

wF (S)

w − z
)x = 0

(
G(Y )

w − z
)t + (

zG(Y )

w − z
)x = 0

(2.36)
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For any fixed T ≥ 0, we introduce

W∞(T ) = sup
0≤t≤T

sup
x∈R+

{|∂λ+

∂x
(t, x)|, |∂λ−

∂x
(t, x)|, |∂Ri

∂x
(t, x)|, |∂Si

∂x
(t, x)|}

(2.39)

Lemma 2.4 Under the assumptions of Theorem 1.1, there exists a positive con-
stant C only depending on N0, a, b such that

W∞(T ) ≤ C(M +N) (2.40)
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Proof: For any fixed point (t, x) ∈ [0, T ] × R+, in the following we estimate
|∂λ−(t,x)

∂x |

Noting the third equation of system (1.20) and (2.35), (2.41), (2.42)

T1λ−(t, x) = 0 (2.49)

T1(T1 − T2)λ−(t, x) = 0 (2.50)

(
∂

∂t
+ λ+(t, x)

∂

∂x
)(λ+(t, x)− λ−(t, x))

∂λ−(t, x)

∂x
= 0 (2.51)

(λ+(t, x)−λ−(t, x))∂λ−(t,x)
∂x is a constant along any given forward characteristic.

There are only the following two cases:
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Case 1: The forward characteristic C̃1 : x = x1(t, β) intersects x axis at a point
(0, β). By (2.51), we have

(λ+(t, x)− λ−(t, x))
∂λ−(t, x)

∂x
= (Λ+(β)− Λ−(β))Λ′

−(β) (2.52)

Noting Lemma 2.1, we have

|∂λ−(t, x)

∂x
| ≤ C|Λ′

−(β)|

≤ C[( sup
β∈R+

|∂Λ−(β)

∂f ′
|)|f ′′(β)|+ ( sup

β∈R+

|∂Λ−(β)

∂g
|)|g′(β)|] (2.53)

≤ C sup
β∈R+

(|f ′′(β)|+ |g′(β)|) ≤ CN (2.54)

where C only depends on N0, a, b.

http://pankejia.yculblog.com


Home Page

Title Page

JJ II

J I

Page 38 of 55

Go Back

Full Screen

Close

Quit

Case 2: The forward characteristic C̃1 : x = x1(t) intersects t axis at a point
(γ, 0) and the backward characteristic C̃2 : x = x2(t, α) passing through (γ, 0)

intersects x axis at a point (0, α). Then, we have

(λ+(t, x)− λ−(t, x))
∂λ−(t, x)

∂x
= (λ+(γ, 0)− λ−(γ, 0))

∂λ−(γ, 0)

∂x
(2.55)

|∂λ−(t, x)

∂x
| ≤ C|∂λ−(γ, 0)

∂x
| (2.56)

Noting the third equation of system (1.20), we can get

|∂λ−(t, x)

∂x
| ≤ C|∂λ−(γ, 0)

∂γ
| (2.57)

Noting (2.8), (2.9) and (2.12) we have

|∂λ−(t, 0)

∂t
| ≤ C(| ∂

∂t
(
2(h · v)
1 + |h|2

)|+ |Λ′
+(α)||dα

dt
|) (2.58)

Noting C̃2 : x = x2(t) satisfies
dx(t)

dt
= λ−(t, x2(t, α))

t = 0 : x2(0, α) = α
(2.59)
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Noting C̃2 : x = x2(t) satisfies
dx(t)

dt
= λ−(t, x2(t, α))

t = 0 : x2(0, α) = α
(2.59)

Therefore
|∂λ−(t, 0)

∂t
| ≤ C(|h′||v|+ |h||∂v

∂t
|+ |Λ′

+(α)|) (2.60)

Noticing
vi(γ, 0) = Ri(γ, 0)− λ+(γ, 0)hi(γ)

Then, by the estimate obtained in the previous case we can estimate |∂v
∂t |, thus

|∂λ−(t, 0)

∂t
| ≤ C(|h′|+ |h|N + |f ′′(α)|+ |g′(α)|) (2.61)

Therefore
|∂λ−(t, x)

∂x
| ≤ C(M +N) (2.62)

By the same method, we can get

|∂Si(t, x)

∂x
| ≤ C(M +N) (2.64)
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Proof of Theorem 1.1 Under the assumptions of Theorem 1.1, by Lemma 2.1-
2.4, on the domain D

‖λ±‖1, ‖Ri‖1, ‖Si‖1 ≤ C(M +N + 1)

(λ+(t, x)− λ−(t, x)) ≥ b+ a

Noting (1.24), we can get uniform a priori estimate of C1 norm of u and v. i.e.
system (1.16) have the global C1 solutions. Then, the system (1.5)-(1.7) have
global C2 solutions.
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FUniform a priori estimate For any fixed T ≥ 0, we introduce

W1(T ) = max
i=1,...,n

sup
0≤t≤T

{
∫ +∞

0
|∂λ+

∂x
(t, x)|dx,

∫ +∞

0
|∂λ−
∂x

(t, x)|dx

∫ +∞

0
|∂Ri

∂x
(t, x)|dx,

∫ +∞

0
|∂Si

∂x
(t, x)|dx} (3.1)

W̃1(T ) = max
i=1,...,n

{sup
C̃1

∫
C̃1

|∂λ+

∂x
(t, x)|dt, sup

C̃2

∫
C̃2

|∂λ−
∂x

(t, x)|dt

sup
C̃1

∫
C̃1

|∂Ri

∂x
(t, x)|dt, sup

C̃2

∫
C̃2

|∂Si

∂x
(t, x)|dt} (3.2)

where C̃1 stands for any given forward characteristic dx
dt = λ+ in the domain

[0, T ]×R+;
C̃2 stands for any given backward characteristic dx

dt = λ− in the domain [0, T ]×
R+.
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Lemma 3.1 Under the assumptions of Theorem 1.3, there exists a positive
constant C only depending on N0, a, b such that, the following estimates hold:

W̃1(T ),W1(T ) ≤ C(N2 +M2 +M1N) (3.3)

Proof: Differentiating the system (1.20) with respect to x. We have

∂t(
∂λ−
∂x

) + ∂x(λ+
∂λ−
∂x

) = 0

∂t(
∂λ+

∂x
) + ∂x(λ−

∂λ+

∂x
) = 0

∂t(
∂Ri

∂x
) + ∂x(λ−

∂Ri

∂x
) = 0 (i = 1, ...n)

∂t(
∂Si

∂x
) + ∂x(λ+

∂Si

∂x
) = 0 (i = 1, ...n)

(3.4)

We rewrite (3.5) as 

d|∂λ−
∂x

|(dx− λ+dt) = 0

d|∂λ+

∂x
|(dx− λ−dt) = 0

d|∂Ri

∂x
|(dx− λ−dt) = 0 (i = 1, ...n)

d|∂Si

∂x
|(dx− λ+dt) = 0 (i = 1, ...n)

(3.6)
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In the following we only prove∫
C̃2

|∂λ−
∂x

|(t, x)dt ≤ C(M2 +N2 +M1N) (3.16)

There are only three possibilities:

Case 1: For any fixed α ∈ R+, let C̃2: x = x2(t, α) stands for any given
backward characteristic, passing through the point A(0, α) on the x axis and
intersecting t = T at a point P . We draw a forward characteristic C̃1 : x =

x1(t, β) from P downward and intersects x axis at a point B(0, β).
Then, we integrate Equation (3.15) in the region APB to get∫

C̃2

(λ+ − λ−)|∂λ−
∂x

|(t, x)dt =

∫ α

β

|Λ′
−(x)|dx (3.17)

Notice that Lemma 2.1 and (2.2), (3.2), we can get∫
C̃2

|∂λ−
∂x

|(t, x)dt ≤ CW1(0) ≤ CN2 (3.18)
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Case 2: For any fixed α ∈ R+, let C̃2: x = x2(t, α) stands for any given
backward characteristic, passing through the point A(0, α) on the x axis and
intersecting t = T at a point P . We draw a backward characteristic C̃1 : x =

x1(t) from P downward and intersects t axis at a point B(γ, 0).
Then, we integrate Equation (3.15) in the region PAOB to get∫

C̃2

(λ+ − λ−)|∂λ−
∂x

|(t, x)dt =

∫ γ

0
λ+|

∂λ−
∂x

(t, 0)|dt+

∫ α

0
|Λ′

−(x)|dx (3.19)

Using the third equation of system (1.20) and Lemma 2.1, we have∫
C̃2

|∂λ−
∂x

|(t, x)dt ≤ C(

∫ γ

0
|∂λ−
∂t

|(t, 0)dt+

∫ α

0
|Λ′

−(x)|dx) (3.20)

Then, noting (2.61)∫
C̃2

|∂λ−
∂x

|(t, x)dt ≤ C(

∫ +∞

0
|∂λ−
∂t

|(t, 0)dt+

∫ +∞

0
|Λ′

−(x)|dx)

≤ C(M2 +N2 +M1N) (3.21)
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Case 3: For any fixed α ∈ R+, let C̃2: x = x2(t, α) stands for any given
backward characteristic, passing through the point A(0, α) on the x axis and
intersecting t axis at a point B(γ, 0).
Then, we integrate equation (3.15) in the region AOB to get∫ γ

0
(λ+ − λ−)|∂λ−

∂x
|(t, x)dt =

∫ α

0
|Λ′

−(x)|dx+

∫ γ

0
λ+|

∂λ−
∂x

|(t, 0)dt (3.22)

Similarly, we can get∫
C̃2

|∂λ−
∂x

|(t, x)dt ≤ C(

∫ α

0
|Λ′

−(x)|dx+

∫ γ

0
|∂λ−
∂t

|(t, 0)dt)

Then ∫
C̃2

|∂λ−
∂x

|(t, x)dt ≤ C(M2 +N2 +M1N) (3.23)
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Lemma 3.2 Under the assumptions of Theorem 1.3, we have

{
∫

L1

(1− λ+)(t, x)dt,

∫
L2

(1 + λ−(t, x))dt,∫
L1

|Ri(t, x)|dt,
∫

L2

|Si(t, x)|dt} ≤ C(N1 +M1) (3.31)

{
∫

C̃1

(1− λ+(t, x))dt,

∫
C̃2

(1 + λ−(t, x))dt,∫
C̃1

|Ri(t, x)|dt,
∫

C̃2

|Si(t, x)|dt} ≤ C(N1 +M1) (3.32)

where C̃1 stands for any given forward characteristic dx
dt = λ+ in the domain

[0, T ]×R+;
C̃2 stands for any given backward characteristic dx

dt = λ− in the domain
[0, T ] × R+; L1 stands for any given radial that has the slope 1 in the domain
[0, T ]× R+; L2 stands for any given radial that has the slope −1 in the domain
[0, T ]×R+.
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F The proof of Theorem 1.3
Let

D

D1t
=

∂

∂t
+

∂

∂x
(4.1)

Obviously,
D

D1t
= T1 + (1− λ+)

∂

∂x
(4.2)

Thus, noting system (1.20)

Dλ−
D1t

= T1λ− + (1− λ+)
∂λ−
∂x

(4.3)

In the following we consider Equation (4.3), i.e.

Dλ−
D1t

= (1− λ+)
∂λ−
∂x

(4.4)

For any fixed point (t, x) ∈ D, define ξ = x− t
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Case 1: ξ ≥ 0, it follows Equation (4.4) that

λ−(t, x) = λ−(t, ξ + t) = λ−(0, ξ) +

∫ t

0
(1− λ+)

∂λ−
∂x

(s, ξ + s)ds (4.5)

By (2.65) and Lemma 3.2, we have

|
∫ t

0
(1− λ+)

∂λ−
∂x

(s, ξ + s)|ds

≤ W∞(∞)

∫ +∞

0
|1− λ+|(s, ξ + s)dx

≤ C(M +N)(M1 +N1) (4.6)

This implies that the integral
∫ t

0 (1 − λ+)∂λ−
∂x (s, ξ + s)ds converges uniformly

for ξ ∈ R+, On the other hand, noting that all functions in the right-hand side
in Equation (4.5) are continuous with respect to ξ. Then, we observe that there
exists a unique function ψ̃(ξ) ∈ C0(R+) such that

λ−(t, x) −→ ψ̃(x− t) t −→∞ (4.7)
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Case 2: ξ ≤ 0, it follows Equation (4.5) that

λ−(t, x) = λ−(t, ξ + t) = λ−(−ξ, 0) +

∫ t

−ξ

(1− λ+)
∂λ−
∂x

(s, ξ + s)ds (4.8)

By (2.65) and Lemma 3.2, we can get∫ t

−ξ

(1− λ+)
∂λ−
∂x

(s, ξ + s)ds

≤ W∞(∞)

∫ t

−ξ

(1− λ+)(s, ξ + s)ds

≤ C(M +N)(M1 +N1) (4.9)

Then,we obtain that there exists a unique function ψ̄(ξ) ∈ C0(R−) such that

λ−(t, x) −→ ψ̄(x− t) t −→ +∞ (4.10)
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Case 3: When ξ −→ 0, notice that above cases we can get

ψ̃(ξ) −→ ψ̃(0) and ψ̄(ξ) −→ ψ̄(0) (4.11)

Moreover
ψ̃(0) = ψ̄(0) (4.12)

We define

ψ(ξ) =

{
ψ̃(ξ), ξ ∈ R+;

ψ̄(−ξ), ξ ∈ R−;

Hence from above we have proved the following lemma

Lemma 4.1 There exists a unique function ψ(x− t) ∈ C0(R), such that

λ−(t, x) −→ ψ(x− t) t −→ +∞ (4.13)
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Remark 4.1 In the same way, we can obtain that there exists a unique function
ψi(x− t) ∈ C0(R) such that

Si(t, x) −→ ψi(x− t) t −→ +∞ i = 1, ..., n (4.14)

Lemma 4.2 When t −→ +∞, we have

λ+(t, x) −→ 1 (4.15)

Ri(t, x) −→ 0 i = 1, ..., n (4.16)

uniformly for all x ≥ 0.
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Noting (1.24),

lim
t−→∞

ui(t, x) = lim
t−→∞

Ri(t, x)− Si(t, x)

λ+(t, x)− λ−(t, x)
= lim

t−→∞

−ψi(x− t)

1− ψ(x− t)
(4.17)

lim
t−→∞

vi(t, x) = lim
t−→∞

λ+Si(t, x)− λ−Ri(t, x)

λ+(t, x)− λ−(t, x)

= lim
t−→∞

ψi(x− t)

1− ψ(x− t)
(4.18)

Then, when x ≥ 0, we can get

lim
t−→∞

ui(t, x) =
−ψi(x− t)

1− ψ(x− t)
.
= Φi(x− t) i = 1, ..., n (4.19)

lim
t−→∞

vi(t, x) =
ψi(x− t)

1− ψ(x− t)
.
= −Φi(x− t) i = 1, ..., n (4.20)

We next prove that Φi(ξ) ∈ C1(R). Noting ψi(ξ), ψ(ξ) ∈ C0(R), we need
to show that d(ψi(ξ))/dξ, d(ψ(ξ))/dξ ∈ C0(R). It suffices to show that
ψ(ξ), ψi(ξ) ∈ C1(R).
In the following we only prove ψ(ξ) ∈ C1(R)
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Lemma 4.3 Under the assumptions of Theorem 1.3, the limit

lim
t−→∞

∂λ−
∂x

(t, x1(t, β))
.
= ψ∗(β) (4.21)

exists and is continuous. Moreover

|ψ∗(β)| ≤ C(M +N)(N2 +M2 +M1N) (4.22)

Lemma 4.4 The limit
lim

t−→∞

∂λ−
∂x

(t, ξ + t)

exists and is continuous with respect to ξ.
Lemma 4.5

dψ(ξ)

dξ
= lim

t−→∞

∂λ−
∂x

(t, ξ + t). (4.65)
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Remark 4.3 In the similar way, we also can prove

lim
t−→∞

∂Si

∂x
(t, ξ + t) =

dψi(ξ)

dξ
(4.69)

Lemma 4.6
lim

t−→∞

∂λ−
∂x

(t, ξ + t) = ψ∗(ϑ(ξ)) (4.70)

is continuous in R. Moreover

dψ(ξ)

dξ
= ψ∗(ϑ(ξ)) (4.71)

Remark 4.4 By the same method, we obtain that ∂Si

∂x (t, ξ + t) have the similar
conclusion. Moreover

dψi(ξ)

dξ
= ψ∗i (ϑ(ξ)) (4.75)
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