Initial-boundary value problem for the equation of time-like extremal surfaces in Minkowski space

Zhou Yi

Institute of Mathematics, Fudan University

yizhou@fudan.ac.cn

Joint work with Liu Jianli

Close

We denote $(x_0, x_1, ..., x_{n+1})$ a point in the (n+1)+1 dimensional Minkowski space endorsed with the metric

$$ds^2 = -dx_0^2 + dx_1^2 + \dots + dx_{n+1}^2$$

Let

$$x_0 = t, x_1 = x, x_2 = \phi_1(t, x), ..., x_{n+1} = \phi_n(t, x)$$

be a two dimensional time like surface. Then the induced metric on the surface is

$$d_*s^2 = -dt^2 + dx^2 + d(\phi_1)^2 + \dots + d(\phi_n)^2$$
$$= -(1 - (\phi_t)^2)dt^2 + (1 + (\phi_x)^2)dx^2 + 2\phi_t \cdot \phi_x dx dt$$

where $\phi = (\phi_1, ..., \phi_n)^T$, ϕ_t or ϕ_x denote partial dedifferentiation with respect to t or x respectively and \cdot denotes inner product in \mathbb{R}^n . Thus, it is easy to see that the area of the surface is

$$\int \int \sqrt{1 - (\phi_t)^2 + (\phi_x)^2 - (\phi_t)^2 (\phi_x)^2 + (\phi_t \cdot \phi_x)^2} dx dt$$

Home Page

Title Page

Page 2 of 55

Go Back

Full Screen

Close

An extremal surface is defined to be the extremal point of the area functional, hence it satisfies the Euler-Lagrange equations

$$\left(\frac{(1+(\phi_x)^2)\phi_t - (\phi_t \cdot \phi_x)\phi_x}{\sqrt{1-(\phi_t)^2 + (\phi_x)^2 - (\phi_t)^2(\phi_x)^2 + (\phi_t \cdot \phi_x)^2}}\right)_t - \left(\frac{(1-(\phi_t)^2)\phi_x + (\phi_t \cdot \phi_x)\phi_t}{\sqrt{1-(\phi_t)^2 + (\phi_x)^2 - (\phi_t)^2(\phi_x)^2 + (\phi_t \cdot \phi_x)^2}}\right)_x = 0$$
(4)

We consider the Cauchy problem for system (4) with initial data

$$\phi(0,x) = h(x), \ \phi_t(0,x) = g(x)$$

where h' and g are vector valued C^1 functions.

Home Page

Title Page

Page 3 of 55

Go Back

Full Screen

Close

DEPARTMENT AND INSTITUTE OF MATHEMATICS

Let

$$u = \phi_x$$
, $v = \phi_t$

Then, Eq.(4) can be equivalently rewritten as a first order systems of conservation laws for the unknown U(t,x) = (u(t,x), v(t,x)) as follows

$$u_t - v_x = 0$$

$$\left(\frac{(1+u^2)v - (u \cdot v)u}{\sqrt{1-v^2+u^2-v^2u^2+(u \cdot v)^2}}\right)_t - \left(\frac{(1-v^2)u + (u \cdot v)v}{\sqrt{1-v^2+u^2-v^2u^2+(u \cdot v)^2}}\right)_x = 0$$

The initial condition then becomes $(u(0, x), v(0, x)) = U_0(x) = (h'(x), g(x))$. This is an interesting model in Lorentian geometry.

Home Page

Title Page

Page 4 of 55

Go Back

Full Screen

Close

- ♦ Barbashov, Nesterenko and Chervyakov [10](Commun.Math.Phys.(1982)) Milnor [11] (Michigan Math. (1990))
- ♦ Gu [12] (Nonlinear Differential Equations Appl 4. (1990)). [13] (Chinese Ann.Math (1994))
 Kong [14] (Europhys.Lett. (2004))
- ♦ D. Chae and H. Huh [15] (J. Math. Phys(2004)) H.Lindblad [16] (Proc. Am. Math. Soc (2004)) Kong, Sun and Zhou [17] (J.Math.phys (2006))

Home Page

Title Page

Page 5 of 55

Go Back

Full Screen

Close

In [17] they showed that system can be reduced to

$$\begin{cases} u_t - v_x = 0 \\ v_t - \frac{2(u \cdot v)}{1 + u^2} v_x - \frac{1 - v^2}{1 + u^2} u_x = 0 \end{cases}$$

They found that it enjoys many interesting properties:nonstrictly hyperbolicity, constant multiplicity of eigenvalues, linear degeneracy of all characteristic fields, richness, etc. The system have two n-constant multiple eigenvalues:

$$\lambda_{\pm} = \frac{1}{1 + u^2} (-(u \cdot v) \pm \sqrt{\Delta(u, v)})$$

where $\triangle(u, v) = 1 - v^2 + u^2 - u^2v^2 + (u \cdot v)^2 > 0$. They also proved

$$|\lambda_{\pm}(t,x)| \le 1$$

Home Page

Title Page

Page 6 of 55

Go Back

Full Screen

Close

Let

$$R_i = v_i + \lambda_+ u_i, \quad (i = 1, ..., n)$$

 $S_i = v_i + \lambda_- u_i, \quad (i = 1, ..., n)$

then they satisfies the following systems

$$\begin{cases} \partial_t \lambda_+ + \lambda_- \partial_x \lambda_+ = 0 \\ \partial_t R_i + \lambda_- \partial_x R_i = 0 \quad (i = 1, ..., n) \\ \partial_t \lambda_- + \lambda_+ \partial_x \lambda_- = 0 \\ \partial_t S_i + \lambda_+ \partial_x S_i = 0 \quad (i = 1, ..., n) \end{cases}$$

$$t = 0: \lambda_{+}(0, x) = \Lambda_{+}(x), \lambda_{-}(0, x) = \Lambda_{-}(x),$$

$$R_{i}(0, x) = R_{i}^{0}(x), S_{i}(0, x) = S_{i}^{0}(x)$$

Then it was proved that above system admits a global classical solution for all $t \in \mathbb{R}^+$, provided that U_0 is C^1 and the strictly hyperbolic condition

$$\delta = \inf_{x \in R} \Lambda_{+}(x) - \sup_{x \in R} \Lambda_{-}(x) > 0 \tag{5}$$

is satisfied.

$$u_i(t,x) = \frac{R_i(t,x) - S_i(t,x)}{\lambda_+(t,x) - \lambda_-(t,x)}, \ v_i(t,x) = \frac{\lambda_+ S_i(t,x) - \lambda_- R_i(t,x)}{\lambda_+(t,x) - \lambda_-(t,x)}$$

Home Page

Title Page

Page 7 of 55

Go Back

Full Screen

Close

Theorem A. Suppose that (5) is satisfied, then the cauchy problem (4) admits a unique global C^2 solution $\phi = \phi(t, x)$ on $R^+ \times R$. Moreover, it holds that

$$\triangle(\phi_x(t,x),\phi_t(t,x)) > 0, \ \forall (t,x) \in \mathbb{R}^+ \times \mathbb{R}$$

Under the following assumptions:

$$\sup_{x \in R} \{ |h''(x)| + |g'(x)| \} \doteq \bar{M} < \infty,
\int_{-\infty}^{+\infty} |h'(x)| + |g(x)| dx \doteq \bar{N}_1 < \infty
\int_{-\infty}^{+\infty} |h''(x)| + |g'(x)| dx \doteq \bar{N}_2 < \infty
\bar{M}_0 = \sup_{x \in R} \{ |h'(x)| + |g(x)| \}$$

Home Page

Title Page

Go Back

Full Screen

Close

Firstly we consider the Cauchy problem:

• Consider Cauchy problem of the first order general quasilinear hyperbolic systems

$$\frac{\partial u}{\partial t} + A(u)\frac{\partial u}{\partial x} = B(u),$$
$$u(0, x) = f(x)$$

- ◆The existence of the global classical solutions:

 Bressan [1]Indiana University Mathamatics Journal (1988)

 Li [2] (published in the United States with John Wiley & Sons, 1994.)

 Li, Zhou and Kong [3] Comm.PDE (1994). [4]Nonl.Anal.(1997)

 Kong [5],

 Zhou [6] Chin. Ann. Math. (2004)
- ♦ Asymptotic behavior: Kong and Yang [7] Comm in Part Diff Eqs. (2003) Dai and Kong [8] Chin. Ann. Math. B (2006), [9] (preprint).

Home Page

Title Page

Page 9 of 55

Go Back

Full Screen

Close

$\bigstar \bigstar$ In the following we consider the following diagonalizable quasilinear hyperbolic systems

$$\frac{\partial u_i}{\partial t} + \lambda_i(u) \frac{\partial u_i}{\partial x} = 0 \tag{1}$$

where $u = (u_1, ..., u_n)^T$ is the unknown vector-valued function of (t, x). $\lambda_i(u)$ is given C^2 vector-valued function of u and is linearly degenerate, i.e.

$$\frac{\partial \lambda_i(u)}{\partial u_i} \equiv 0$$

and the system (1) is strictly hyperbolic, i.e.

$$\lambda_1(u) < \dots < \lambda_n(u)$$

Suppose that there exists a positive constant δ such that,

$$\lambda_{i+1}(u) - \lambda_i(v) \ge \delta, \quad i = 1, ..., n-1.$$

Home Page

Title Page

Page 10 of 55

Go Back

Full Screen

Close

Consider the cauchy problem for the system (1) with the following initial data

$$t=0: \quad u=f(x)$$

where f(x) is a C^1 vector-valued function of x. The global existence of the classical solutions is well-known see Li [2].

Home Page

Title Page

Page 11 of 55

Go Back

Full Screen

Close

Assumptions

$$\sup_{x \in R} |f'(x)| \doteq M < \infty$$

$$\int_{-\infty}^{+\infty} |f(x)| dx \doteq N_1 < \infty$$

$$\int_{-\infty}^{+\infty} |f'(x)| dx \doteq N_2 < \infty$$

$$\sup_{x \in R} |f(x)| \doteq M_0$$

Home Page

Title Page

Page 12 of 55

Go Back

Full Screen

Close

Theorem 1.1. Under the assumptions of above, there exists a unique C^1 vectorvalued function $\phi(x) = (\phi_1(x), ..., \phi_n(x))^T$ such that,

$$u(t,x) \longrightarrow \sum_{i=1}^{n} \phi_i(x - \lambda_i(0)t)e_i, \quad t \longrightarrow \infty$$

where

$$e_i = (0, ..., 1^i, 0, ..., 0)^T$$

Moreover, $\phi_i(x)(i=1,...,n)$ is global Lipschitz continuous. Furthermore, If system (1) is rich and the derivative of the initial data f'(x) is global ρ -hölder continuous, where $0 < \rho \le 1$, i.e. there exists a positive constant κ independent of $\alpha, \beta \in R$ such that,

$$|f'(\alpha) - f'(\beta)| \le \kappa |\alpha - \beta|^{\rho}$$

Then $\phi'_i(x)$ (i = 1, ..., n) satisfies

$$|\phi_i'(\alpha) - \phi_i'(\beta)| \le C\tilde{M}(|\alpha - \beta|^{\rho} + |\alpha - \beta|)$$

Home Page

Title Page

Page 13 of 55

Go Back

Full Screen

Close

Lemma 4.1. Under the assumptions above, the limit

$$\lambda_{-}(t,x) \longrightarrow \tilde{\psi}(x-t), \quad t \longrightarrow \infty$$

exists and for any $\alpha, \beta \in R$, we have

$$|\tilde{\psi}(\alpha) - \tilde{\psi}(\beta)| \le C\bar{M}|\alpha - \beta|$$

Moreover,

$$|\tilde{\psi}(\alpha)| \le 1$$

Remark 4.1. Using the similar method, we can get the following estimate

$$S_i(t,x) \longrightarrow \tilde{\phi}_i(x-t)$$
, exist and $|\tilde{\phi}_i(\alpha) - \tilde{\phi}_i(\beta)| \leq C\bar{M}|\alpha - \beta|$

$$\lambda_{+}(t,x) \longrightarrow \psi(x+t)$$
, exist and $|\psi(\alpha) - \psi(\beta)| \leq C\bar{M}|\alpha - \beta|$

$$R_i(t,x) \longrightarrow \check{\phi}_i(x+t)$$
, exist and $|\check{\phi}_i(\alpha) - \check{\phi}_i(\beta)| \leq C\bar{M}|\alpha - \beta|$

Moreover,

$$|\psi(\alpha)| \le 1, \ |\tilde{\phi}_i(\alpha)|, |\check{\phi}_i(\alpha)| \le 1 + C\bar{M}\bar{N}_1$$

Home Page

Title Page

Page 14 of 55

Go Back

Full Screen

Close

Then

$$\lim_{t \to \infty} u_i(t, x) = \lim_{t \to \infty} \frac{\dot{\phi}_i(x+t) - \dot{\phi}_i(x-t)}{\psi(x+t) - \tilde{\psi}(x-t)}$$

$$\lim_{t \to \infty} v_i(t, x) = \lim_{t \to \infty} \frac{\psi(x+t)\dot{\phi}_i(x-t) - \tilde{\psi}(x-t)\dot{\phi}_i(x+t)}{\psi(x+t) - \tilde{\psi}(x-t)}$$

Then, we can get

when x > 0

$$\lim_{t \to \infty} u_i(t, x) = \frac{-\tilde{\phi}_i(x - t)}{1 - \tilde{\psi}(x - t)} \doteq \Phi_i(x - t), \quad i = 1, ..., n$$

$$\lim_{t \to \infty} v_i(t, x) = \frac{\tilde{\phi}_i(x - t)}{1 - \tilde{\psi}(x - t)} \doteq -\Phi_i(x - t), \quad i = 1, ..., n$$

when $x \leq 0$

$$\lim_{t \to \infty} u_i(t, x) = \frac{\dot{\phi}_i(x+t)}{1 + \psi(x+t)} \doteq \Psi_i(x+t), \quad i = 1, ..., n$$

$$\lim_{t \to \infty} v_i(t, x) = \frac{\phi_i(x+t)}{1 + \psi(x+t)} \doteq \Psi_i(x+t), \quad i = 1, ..., n$$

Home Page

Title Page

Tage 15 01 55

Go Back

Full Screen

Close

DEPARTMENT AND INSTITUTE OF MATHEMATICS
PRIME MOVISHITY

So we can conclude

$$u_i(t,x) \longrightarrow \Phi_i(x-t) + \Psi_i(x+t)$$

$$v_i(t,x) \longrightarrow -\Phi_i(x-t) + \Psi_i(x+t)$$

We also have conclusion that $\Phi_i(\alpha)$ and $\Psi_i(\alpha)(i=1,...,n)$ are Lipschitz continuous.

Home Page

Title Page

Page 16 of 55

Go Back

Full Screen

Close

Theorem 1.2. Under the assumptions of above, furthermore, suppose initial data satisfies (5). There exist unique C^1 vector-valued functions $\Phi(x) = (\Phi_1(x), ..., \Phi_n(x))$ and $\Psi(x) = (\Psi_1(x), ..., \Psi_n(x))$ such that,

$$(\phi_i)_x \longrightarrow \Phi_i(x-t) + \Psi_i(x+t), \quad t \longrightarrow \infty \quad i = 1, ..., n$$

$$(\phi_i)_t \longrightarrow -\Phi_i(x-t) + \Psi_i(x+t) \ t \longrightarrow \infty \ i=1,...,n$$

Moreover $\Phi_i(x)$ and $\Psi_i(x)(i=1,...,2n)$ are global Lipschitz continuous. Exactly, there exists a positive constant \tilde{M} only depending on $\bar{M}, \bar{N}_1, \bar{N}_2$. It holds that

$$|\Phi_i(\alpha) - \Phi_i(\beta)| \le C\tilde{M}|\alpha - \beta|$$

$$|\Psi_i(\alpha) - \Psi_i(\beta)| \le C\tilde{M}|\alpha - \beta|$$

Furthermore, If the initial data h'', g' are global ρ -hölder $(0 < \rho \le 1)$ continuous, i.e. there exists a positive constant κ independent of $\alpha, \beta \in R$ such that,

$$|h''(\alpha) - h''(\beta)| + |g'(\alpha) - g'(\beta)| \le \kappa |\alpha - \beta|^{\rho}$$

then, $\Phi'_i(x)$ and $\Psi'_i(x)$ satisfy

$$|\Phi_i'(\alpha) - \Phi_i'(\beta)| + |\Psi_i'(\alpha) - \Psi_i'(\beta)| \le C\kappa \tilde{M}^{\rho} |\alpha - \beta|^{\rho} + C\tilde{M} |\alpha - \beta|$$

Home Page

Title Page

Page 17 of 55

Go Back

Full Screen

Close

★★Initial-boundary value problem for the equation of time-like extremal surface in Minkowski space

We only consider the initial-boundary value problem with Neumann boundary condition

$$\begin{cases} u_t - v_x = 0 \\ v_t - \frac{2(u \cdot v)}{1 + u^2} v_x - \frac{1 - v^2}{1 + u^2} u_x = 0 \\ t = 0 : \quad u = f'(x), v = g(x) \\ x = 0 : \quad u = h(t) \end{cases}$$
 (1.16)

Home Page

Title Page

Page 18 of 55

Go Back

Full Screen

Close

Suppose that U_0 , h are C^1 functions with bounded C^1 norm and the initial conditions satisfy

$$\sup_{x \in R^+} \Lambda_-(x) \le -a < 0 < b \le \inf_{x \in R^+} \Lambda_+(x) \tag{1.25}$$

Without loss of generality, we assume a < b. (Otherwise, we can always replace a by a smaller positive number). If the Neumann boundary data is sufficiently small, for example

$$|h(t)| \le \frac{b-a}{3} \tag{1.26}$$

Then we have the following global existence result for the initial-boundary value problem (1.5)-(1.7)

Home Page

Title Page

Page 19 of 55

Go Back

Full Screen

Close

Theorem 1.1 Suppose that the initial data and Neumann boundary data satisfy (1.25), (1.26), the conditions of C^2 compatibility (1.9) are satisfied, then the initial-boundary value problem (1.5)-(1.7) admits a unique global C^2 solution $\phi = \phi(t,x)$ on $R^+ \times R^+$.

Home Page

Title Page

Page 20 of 55

Go Back

Full Screen

Close

Similarly, we suppose U_0 , H' are C^1 functions with bounded C^1 norm and the initial conditions satisfy

$$\sup_{x \in R^+} \Lambda_-(x) \le -a < 0 < b \le \inf_{x \in R^+} \Lambda_+(x)$$

Without loss of generality, we assume a < b. If the first derivative of Dirichlet boundary data is sufficiently small, for example

$$|H'(t)| \le b - a \tag{1.27}$$

The conditions of C^2 compatibility are satisfied. i.e.

$$f(0) = H(0), \ H'(0) = g(0)$$
 (1.28)

and

$$H''(0) - \frac{2f'(0) \cdot g(0)}{1 + f'^{2}(0)}g'(0) - \frac{1 - g^{2}(0)}{1 + f'^{2}(0)}f''(0) = 0$$
 (1.29)

Then we have the following global existence result

Home Page

Title Page

Page 21 of 55

Go Back

Full Screen

Close

Theorem 1.2 Suppose the above assumptions (1.25) and (1.27)-(1.29) are satisfied, then the initial-boundary value problem (1.5), (1.6) and (1.8) admits a unique global C^2 solution $\phi = \phi(t, x)$ on $R^+ \times R^+$.

Home Page

Title Page

Page 22 of 55

Go Back

Full Screen

Close

If we also suppose that the initial and boundary datum satisfy the following assumptions:

$$\sup_{x \in R^+} \{ |f''(x)| + |g'(x)| \} \doteq N < \infty \tag{1.30}$$

$$\int_{0}^{+\infty} |f'(x)| + |g(x)| dx \doteq N_{1} < \infty \tag{1.31}$$

$$\int_{0}^{+\infty} |f''(x)| + |g'(x)| dx \doteq N_2 < \infty \tag{1.32}$$

$$\sup_{x \in R^+} \{ |f'(x)| + |g(x)| \} = N_0 \tag{1.33}$$

$$\sup_{t \in R^+} \{ |h'(t)| \} \doteq M < \infty \tag{1.34}$$

$$\int_0^{+\infty} |h(t)| dt \doteq M_1 < \infty \tag{1.35}$$

$$\int_0^{+\infty} |h'(t)| dt \doteq M_2 < \infty \tag{1.36}$$

Based on the existence of the global classical solutions, we also prove the following Theorem:

Home Page

Title Page

Page 23 of 55

Go Back

Full Screen

Close

Theorem 1.3 Under the assumptions of Theorem 1.1 and above, there exists a unique C^1 vector-valued function $\Phi(x) = (\Phi_1(x), ..., \Phi_n(x))$ such that

$$((\phi_i)_x, (\phi_i)_t) \longrightarrow (\Phi_i(x-t), -\Phi_i(x-t)) \ i = 1, ..., n$$
 (1.37)

Home Page

Title Page

Page 24 of 55

Go Back

Full Screen

Close

Similarly, under the assumptions that

$$\sup_{x\in R^+}\{|f''(x)|+|g'(x)|\} \doteq N < \infty$$

$$\int_0^{+\infty} |f'(x)| + |g(x)| dx \doteq N_1 < \infty$$

$$\int_0^{+\infty} |f''(x)| + |g'(x)| dx \doteq N_2 < \infty$$

$$\sup_{x \in R^+} \{ |f'(x)| + |g(x)| \} = N_0$$

$$\sup_{t \in \mathbb{R}^+} \{ |H''(t)| \} \doteq M < \infty \tag{1.38}$$

$$\int_0^{+\infty} |H'(t)| dt \doteq M_1 < \infty \tag{1.39}$$

$$\int_0^{+\infty} |H''(t)| dt \doteq M_2 < \infty \tag{1.40}$$

We have the following Theorem

Home Page

Title Page

Go Back

Full Screen

Close

Theorem 1.4 Under the assumptions of Theorem 1.2 and above, there exists a unique C^1 vector-valued function $\Psi(x) = (\Psi_1(x), ..., \Psi_n(x))$ such that

$$((\phi_i)_x, (\phi_i)_t) \longrightarrow (\Psi_i(x-t), -\Psi_i(x-t)) \quad i = 1, ..., n$$

$$(1.41)$$

Home Page

Title Page

Page 26 of 55

Go Back

Full Screen

Close

★Key idea of the proof

Lemma 2.1 Under the assumptions of (1.9), (1.25) and (1.26), system (1.20) is strictly hyperbolicity. Furthermore, on the domain D we have

$$\lambda_{-}(t,x) \le -a < 0 < b \le \lambda_{+}(t,x) \tag{2.3}$$

Home Page

Title Page

Page 27 of 55

Go Back

Full Screen

Close

Proof: For any fixed $(t,x) \in D$, we draw the forward characteristic $\tilde{C}_1: x = x_1(t)$ through this point. There are only two possibilities:

Case 1: The forward characteristic C_1 : $x = x_1(t, \beta)$ intersects x axis at a point $(0, \beta)$. By the second equation of system (2.1), $\lambda_{-}(t, x)$ is a constant along any given forward characteristic, then we have

$$\lambda_{-}(t,x) = \Lambda_{-}(\beta) \tag{2.4}$$

Noting (1.25)

$$\lambda_{-}(t,x) \le -a \quad \forall \ (t,x) \in D \tag{2.5}$$

In the similar way, we draw the backward characteristic \tilde{C}_2 : $x = x_2(t, \alpha)$ intersects x axis at a point $(0, \alpha)$. Along any given backward characteristic $\lambda_+(t, x)$ is a constant

$$\lambda_{+}(t,x) = \Lambda_{+}(\alpha) \tag{2.6}$$

Then

$$b \le \lambda_{+}(t, x) \quad \forall (t, x) \in D \tag{2.7}$$

Home Page

Title Page

Page 28 of 55

Go Back

Full Screen

Close

Case 2: The forward characteristic $\tilde{C}_1: x=x_1(t)$ intersects t axis at a point $(\gamma,0)$ and the backward characteristic $\tilde{C}_2: x=x_2(t)$ passing through $(\gamma,0)$ intersects x axis at a point $(0,\alpha)$, where $\tilde{C}_2: x=x_2(t)$ satisfies

$$\frac{dx_2(t)}{dt} = \lambda_-(t, x_2(t, \alpha)), \quad x_2(0, \alpha) = \alpha$$

Similarly, we can get

$$\lambda_{-}(t,x) = \lambda_{-}(\gamma,0) \tag{2.8}$$

$$\lambda_{+}(\gamma, 0) = \Lambda_{+}(\alpha) \tag{2.9}$$

Then

$$\lambda_{-}(t,x) + \Lambda_{+}(\alpha) = \frac{-2(h \cdot v)}{1 + |h|^{2}}$$
 (2.12)

Home Page

Title Page

Page 29 of 55

Go Back

Full Screen

Close

Let $\theta \in [0, \pi]$ is the angle between vectors h and v. We have $h \cdot v = |h||v|\cos\theta$. Then, Equation (2.10) can be rewritten as

$$(1+|h|^2)\Lambda_+(\alpha) + |h||v|\cos\theta = \sqrt{1-|v|^2+|h|^2-|v|^2|h|^2+|h|^2|v|^2\cos^2\theta}$$
(2.13)

Then

$$(1+|h|^2)^2\Lambda_+^2(\alpha) + (1+|h|^2)|v|^2 + 2(1+|h|^2)\Lambda_+(\alpha)|h||v|\cos\theta = 1+|h|^2 \quad (2.14)$$

Dividing (2.14) by $1 + |h|^2$ leads to

$$(1+|h|^2)\Lambda_+^2(\alpha) + |v|^2 + 2\Lambda_+(\alpha)|h||v|\cos\theta = 1$$
 (2.15)

Noting $\theta \in [0, \pi]$, then $|\cos \theta| \le 1$

$$(1+|h|^2)\Lambda_+^2(\alpha) + |v|^2 - 2\Lambda_+(\alpha)|h||v| \le 1$$
$$(|v|-|h|\Lambda_+(\alpha))^2 \le 1 - \Lambda_+^2(\alpha)$$

Home Page

Title Page

Page 30 of 55

Go Back

Full Screen

Close

Notice that the initial data satisfies (1.25), we can get

$$|v| \le \Lambda_{+}(\alpha)|h| + \sqrt{1 - \Lambda_{+}^{2}(\alpha)} \tag{2.16}$$

Thus

$$|v| \le |h| + 1 \tag{2.17}$$

By Equation (2.12), we have

$$-\lambda_{-}(t,x) = \Lambda_{+}(\alpha) + \frac{2|h||v|\cos\theta}{1+|h|^2}$$
 (2.18)

$$\geq \Lambda_{+}(\alpha) - \frac{2|h||v|}{1+|h|^2}$$

Noting (1.25) and (2.17)

$$-\lambda_{-}(t,x) \ge b - \frac{2|h|(|h|+1)}{1+|h|^2} \tag{2.19}$$

On the other hand, the Neumann boundary data satisfies (1.26), then

$$\frac{2|h|(|h|+1)}{1+|h|^2} \le b-a$$

Therefore

$$\lambda_{-}(t,x) \le -a \tag{2.20}$$

Home Page

Title Page

Page 31 of 55

Go Back

Full Screen

Close

Lemma 2.2 Let R_i , S_i be as system (1.20), then

$$\{|R_i(t,x)|, |S_i(t,x)|\} \le C \tag{2.21}$$

where C is a positive constant only depending on a, b, N_0 .

Home Page

Title Page

Page 32 of 55

Go Back

Full Screen

Close

To estimate the first derivatives of the solutions of system (1.20), we consider a linear system

$$\begin{cases} \frac{\partial S}{\partial t} + w(t, x) \frac{\partial S}{\partial x} = 0\\ \frac{\partial Y}{\partial t} + z(t, x) \frac{\partial Y}{\partial t} = 0 \end{cases}$$
(2.32)

where z, w are regarded as given smooth functions. However, z, w are not arbitrary given. S = z, Y = w itself is a solution of system(2.32). Assume that on the domain under consideration

$$w(t,x) - z(t,x) \ge \delta > 0 \tag{2.33}$$

where δ is positive constant. Then w and z are constant along characteristics respectively. Under these assumptions, system (2.32) enjoys the following remarkable properties:

Home Page

Title Page

Page 33 of 55

Go Back

Full Screen

Close

Lemma 2.3 Let

$$T_1 = \frac{\partial}{\partial t} + w(t, x) \frac{\partial}{\partial x}, T_2 = \frac{\partial}{\partial t} + z(t, x) \frac{\partial}{\partial x}$$
 (2.34)

Then

$$[T_1, T_2] = T_1 T_2 - T_2 T_1 = 0 (2.35)$$

For any Lipschitz continuous functions F and G, System (1.20) implies the conservation laws:

$$\begin{cases} (\frac{F(S)}{w-z})_t + (\frac{wF(S)}{w-z})_x = 0\\ (\frac{G(Y)}{w-z})_t + (\frac{zG(Y)}{w-z})_x = 0 \end{cases}$$
(2.36)

Home Page

Title Page

Go Back

Full Screen

Close

For any fixed $T \geq 0$, we introduce

$$W_{\infty}(T) = \sup_{0 \le t \le T} \sup_{x \in R^{+}} \{ |\frac{\partial \lambda_{+}}{\partial x}(t, x)|, |\frac{\partial \lambda_{-}}{\partial x}(t, x)|, |\frac{\partial R_{i}}{\partial x}(t, x)|, |\frac{\partial S_{i}}{\partial x}(t, x)| \}$$
(2.39)

Lemma 2.4 Under the assumptions of Theorem 1.1, there exists a positive constant C only depending on N_0 , a, b such that

$$W_{\infty}(T) \le C(M+N) \tag{2.40}$$

Home Page

Title Page

Go Back

Full Screen

Close

Proof: For any fixed point $(t,x) \in [0,T] \times R^+$, in the following we estimate $\left|\frac{\partial \lambda_-(t,x)}{\partial x}\right|$

Noting the third equation of system (1.20) and (2.35), (2.41), (2.42)

$$T_1 \lambda_-(t, x) = 0 \tag{2.49}$$

$$T_1(T_1 - T_2)\lambda_-(t, x) = 0 (2.50)$$

$$\left(\frac{\partial}{\partial t} + \lambda_{+}(t, x)\frac{\partial}{\partial x}\right)\left(\lambda_{+}(t, x) - \lambda_{-}(t, x)\right)\frac{\partial \lambda_{-}(t, x)}{\partial x} = 0 \tag{2.51}$$

 $(\lambda_+(t,x)-\lambda_-(t,x))\frac{\partial \lambda_-(t,x)}{\partial x}$ is a constant along any given forward characteristic. There are only the following two cases:

Home Page

Title Page

Page 36 of 55

Go Back

Full Screen

Close

Case 1: The forward characteristic \tilde{C}_1 : $x = x_1(t, \beta)$ intersects x axis at a point $(0, \beta)$. By (2.51), we have

$$(\lambda_{+}(t,x) - \lambda_{-}(t,x)) \frac{\partial \lambda_{-}(t,x)}{\partial x} = (\Lambda_{+}(\beta) - \Lambda_{-}(\beta)) \Lambda'_{-}(\beta)$$
 (2.52)

Noting Lemma 2.1, we have

$$\left|\frac{\partial \lambda_{-}(t,x)}{\partial x}\right| \le C|\Lambda'_{-}(\beta)|$$

$$\leq C\left[\left(\sup_{\beta \in R^{+}} \left| \frac{\partial \Lambda_{-}(\beta)}{\partial f'} \right|\right) |f''(\beta)| + \left(\sup_{\beta \in R^{+}} \left| \frac{\partial \Lambda_{-}(\beta)}{\partial g} \right|\right) |g'(\beta)|\right]$$
(2.53)

$$\leq C \sup_{\beta \in R^+} (|f''(\beta)| + |g'(\beta)|) \leq CN \tag{2.54}$$

where C only depends on N_0, a, b .

Home Page

Title Page

Page 37 of 55

Go Back

Full Screen

Close

Case 2: The forward characteristic $\tilde{C}_1: x = x_1(t)$ intersects t axis at a point $(\gamma, 0)$ and the backward characteristic $\tilde{C}_2: x = x_2(t, \alpha)$ passing through $(\gamma, 0)$ intersects x axis at a point $(0, \alpha)$. Then, we have

$$(\lambda_{+}(t,x) - \lambda_{-}(t,x)) \frac{\partial \lambda_{-}(t,x)}{\partial x} = (\lambda_{+}(\gamma,0) - \lambda_{-}(\gamma,0)) \frac{\partial \lambda_{-}(\gamma,0)}{\partial x}$$
(2.55)

$$\left|\frac{\partial \lambda_{-}(t,x)}{\partial x}\right| \le C \left|\frac{\partial \lambda_{-}(\gamma,0)}{\partial x}\right| \tag{2.56}$$

Noting the third equation of system (1.20), we can get

$$\left|\frac{\partial \lambda_{-}(t,x)}{\partial x}\right| \le C \left|\frac{\partial \lambda_{-}(\gamma,0)}{\partial \gamma}\right| \tag{2.57}$$

Noting (2.8), (2.9) and (2.12) we have

$$\left|\frac{\partial \lambda_{-}(t,0)}{\partial t}\right| \le C\left(\left|\frac{\partial}{\partial t}\left(\frac{2(h \cdot v)}{1+|h|^2}\right)\right| + \left|\Lambda'_{+}(\alpha)\right|\left|\frac{d\alpha}{dt}\right|\right) \tag{2.58}$$

Noting $\tilde{C}_2: x = x_2(t)$ satisfies

$$\begin{cases} \frac{dx(t)}{dt} = \lambda_{-}(t, x_{2}(t, \alpha)) \\ t = 0: \quad x_{2}(0, \alpha) = \alpha \end{cases}$$
 (2.59)

Home Page

Title Page

Page 38 of 55

Go Back

Full Screen

Close

Noting $\tilde{C}_2: x = x_2(t)$ satisfies

$$\begin{cases} \frac{dx(t)}{dt} = \lambda_{-}(t, x_{2}(t, \alpha)) \\ t = 0: \quad x_{2}(0, \alpha) = \alpha \end{cases}$$
 (2.59)

Therefore

$$\left|\frac{\partial \lambda_{-}(t,0)}{\partial t}\right| \le C(|h'||v| + |h||\frac{\partial v}{\partial t}| + |\Lambda'_{+}(\alpha)|) \tag{2.60}$$

Noticing

$$v_i(\gamma, 0) = R_i(\gamma, 0) - \lambda_+(\gamma, 0)h_i(\gamma)$$

Then, by the estimate obtained in the previous case we can estimate $\left|\frac{\partial v}{\partial t}\right|$, thus

$$\left|\frac{\partial \lambda_{-}(t,0)}{\partial t}\right| \le C(|h'| + |h|N + |f''(\alpha)| + |g'(\alpha)|) \tag{2.61}$$

Therefore

$$\left|\frac{\partial \lambda_{-}(t,x)}{\partial x}\right| \le C(M+N) \tag{2.62}$$

By the same method, we can get

$$\left|\frac{\partial S_i(t,x)}{\partial x}\right| \le C(M+N) \tag{2.64}$$

Home Page

Title Page

Page 39 of 55

Go Back

Full Screen

Close

Proof of Theorem 1.1 Under the assumptions of Theorem 1.1, by Lemma 2.1-2.4, on the domain D

$$\|\lambda_{\pm}\|_{1}, \|R_{i}\|_{1}, \|S_{i}\|_{1} \le C(M+N+1)$$

$$(\lambda_{+}(t,x) - \lambda_{-}(t,x)) \ge b + a$$

Noting (1.24), we can get uniform a priori estimate of C^1 norm of u and v. i.e. system (1.16) have the global C^1 solutions. Then, the system (1.5)-(1.7) have global C^2 solutions.

Home Page

Title Page

Page 40 of 55

Go Back

Full Screen

Close

\bigstar Uniform a priori estimate For any fixed $T \geq 0$, we introduce

$$W_{1}(T) = \max_{i=1,\dots,n} \sup_{0 \leq t \leq T} \left\{ \int_{0}^{+\infty} \left| \frac{\partial \lambda_{+}}{\partial x}(t,x) \right| dx, \int_{0}^{+\infty} \left| \frac{\partial \lambda_{-}}{\partial x}(t,x) \right| dx \right\}$$

$$\int_{0}^{+\infty} \left| \frac{\partial R_{i}}{\partial x}(t,x) \right| dx, \int_{0}^{+\infty} \left| \frac{\partial S_{i}}{\partial x}(t,x) \right| dx \right\}$$

$$\tilde{W}_{1}(T) = \max_{i=1,\dots,n} \left\{ \sup_{\tilde{C}_{1}} \int_{\tilde{C}_{1}} \left| \frac{\partial \lambda_{+}}{\partial x}(t,x) \right| dt, \sup_{\tilde{C}_{2}} \int_{\tilde{C}_{2}} \left| \frac{\partial \lambda_{-}}{\partial x}(t,x) \right| dt \right\}$$

$$\sup_{\tilde{C}_{1}} \int_{\tilde{C}_{1}} \left| \frac{\partial R_{i}}{\partial x}(t,x) \right| dt, \sup_{\tilde{C}_{2}} \int_{\tilde{C}_{2}} \left| \frac{\partial S_{i}}{\partial x}(t,x) \right| dt \right\}$$

$$(3.2)$$

where \tilde{C}_1 stands for any given forward characteristic $\frac{dx}{dt} = \lambda_+$ in the domain $[0,T] \times R^+$;

 \tilde{C}_2 stands for any given backward characteristic $\frac{dx}{dt} = \lambda_-$ in the domain $[0, T] \times R^+$.

Home Page

Title Page

Page 41 of 55

Go Back

Full Screen

Close

Lemma 3.1 Under the assumptions of Theorem 1.3, there exists a positive constant C only depending on N_0 , a, b such that, the following estimates hold:

$$\tilde{W}_1(T), W_1(T) \le C(N_2 + M_2 + M_1 N)$$
 (3.3)

Proof: Differentiating the system (1.20) with respect to x. We have

$$\begin{cases}
\partial_{t}(\frac{\partial \lambda_{-}}{\partial x}) + \partial_{x}(\lambda_{+}\frac{\partial \lambda_{-}}{\partial x}) = 0 \\
\partial_{t}(\frac{\partial \lambda_{+}}{\partial x}) + \partial_{x}(\lambda_{-}\frac{\partial \lambda_{+}}{\partial x}) = 0 \\
\partial_{t}(\frac{\partial R_{i}}{\partial x}) + \partial_{x}(\lambda_{-}\frac{\partial R_{i}}{\partial x}) = 0 \quad (i = 1, ...n) \\
\partial_{t}(\frac{\partial S_{i}}{\partial x}) + \partial_{x}(\lambda_{+}\frac{\partial S_{i}}{\partial x}) = 0 \quad (i = 1, ...n)
\end{cases}$$
(3.4)

We rewrite (3.5) as

$$\begin{cases}
d \frac{\partial \lambda_{-}}{\partial x} | (dx - \lambda_{+} dt) = 0 \\
d \frac{\partial \lambda_{+}}{\partial x} | (dx - \lambda_{-} dt) = 0 \\
d \frac{\partial R_{i}}{\partial x} | (dx - \lambda_{-} dt) = 0 \quad (i = 1, ...n) \\
d \frac{\partial S_{i}}{\partial x} | (dx - \lambda_{+} dt) = 0 \quad (i = 1, ...n)
\end{cases}$$
(3.6)

Home Page

Title Page

Page 42 of 55

Go Back

Full Screen

Close

In the following we only prove

$$\int_{\tilde{C}_2} \left| \frac{\partial \lambda_-}{\partial x} \right| (t, x) dt \le C(M_2 + N_2 + M_1 N) \tag{3.16}$$

There are only three possibilities:

Case 1: For any fixed $\alpha \in R^+$, let C_2 : $x = x_2(t, \alpha)$ stands for any given backward characteristic, passing through the point $A(0, \alpha)$ on the x axis and intersecting t = T at a point P. We draw a forward characteristic \tilde{C}_1 : $x = x_1(t, \beta)$ from P downward and intersects x axis at a point $B(0, \beta)$.

Then, we integrate Equation (3.15) in the region APB to get

$$\int_{\tilde{C}_2} (\lambda_+ - \lambda_-) \left| \frac{\partial \lambda_-}{\partial x} \right| (t, x) dt = \int_{\beta}^{\alpha} |\Lambda'_-(x)| dx$$
 (3.17)

Notice that Lemma 2.1 and (2.2), (3.2), we can get

$$\int_{\tilde{C}_2} \left| \frac{\partial \lambda_-}{\partial x} \right| (t, x) dt \le CW_1(0) \le CN_2 \tag{3.18}$$

Home Page

Title Page

Page 43 of 55

Go Back

Full Screen

Close

Case 2: For any fixed $\alpha \in R^+$, let C_2 : $x = x_2(t, \alpha)$ stands for any given backward characteristic, passing through the point $A(0, \alpha)$ on the x axis and intersecting t = T at a point P. We draw a backward characteristic \tilde{C}_1 : $x = x_1(t)$ from P downward and intersects t axis at a point $B(\gamma, 0)$.

Then, we integrate Equation (3.15) in the region PAOB to get

$$\int_{\tilde{C}_2} (\lambda_+ - \lambda_-) \left| \frac{\partial \lambda_-}{\partial x} \right| (t, x) dt = \int_0^{\gamma} \lambda_+ \left| \frac{\partial \lambda_-}{\partial x} (t, 0) \right| dt + \int_0^{\alpha} |\Lambda'_-(x)| dx \quad (3.19)$$

Using the third equation of system (1.20) and Lemma 2.1, we have

$$\int_{\tilde{C}_2} \left| \frac{\partial \lambda_-}{\partial x} \right| (t, x) dt \le C \left(\int_0^{\gamma} \left| \frac{\partial \lambda_-}{\partial t} \right| (t, 0) dt + \int_0^{\alpha} \left| \Lambda'_-(x) \right| dx \right)$$
 (3.20)

Then, noting (2.61)

$$\int_{\tilde{C}_2} \left| \frac{\partial \lambda_-}{\partial x} \right| (t, x) dt \le C \left(\int_0^{+\infty} \left| \frac{\partial \lambda_-}{\partial t} \right| (t, 0) dt + \int_0^{+\infty} \left| \Lambda'_-(x) \right| dx \right) \\
\le C \left(M_2 + N_2 + M_1 N \right) \tag{3.21}$$

Home Page

Title Page

Page 44 of 55

Go Back

Full Screen

Close

Case 3: For any fixed $\alpha \in R^+$, let C_2 : $x = x_2(t, \alpha)$ stands for any given backward characteristic, passing through the point $A(0, \alpha)$ on the x axis and intersecting t axis at a point $B(\gamma, 0)$.

Then, we integrate equation (3.15) in the region AOB to get

$$\int_0^{\gamma} (\lambda_+ - \lambda_-) \left| \frac{\partial \lambda_-}{\partial x} \right| (t, x) dt = \int_0^{\alpha} |\Lambda'_-(x)| dx + \int_0^{\gamma} |\lambda_+| \frac{\partial \lambda_-}{\partial x} |(t, 0)| dt \quad (3.22)$$

Similarly, we can get

$$\int_{\tilde{C}_2} \left| \frac{\partial \lambda_-}{\partial x} \right| (t, x) dt \le C \left(\int_0^\alpha |\Lambda'_-(x)| dx + \int_0^\gamma |\frac{\partial \lambda_-}{\partial t}| (t, 0) dt \right)$$

Then

$$\int_{\tilde{C}_2} \left| \frac{\partial \lambda_-}{\partial x} \right| (t, x) dt \le C(M_2 + N_2 + M_1 N) \tag{3.23}$$

Home Page

Title Page

Page 45 of 55

Go Back

Full Screen

Close

Lemma 3.2 Under the assumptions of Theorem 1.3, we have

$$\begin{cases}
\int_{L_{1}} (1 - \lambda_{+})(t, x) dt, & \int_{L_{2}} (1 + \lambda_{-}(t, x)) dt, \\
\int_{L_{1}} |R_{i}(t, x)| dt, & \int_{L_{2}} |S_{i}(t, x)| dt \end{cases} \leq C(N_{1} + M_{1}) \\
\begin{cases}
\int_{\tilde{C}_{1}} (1 - \lambda_{+}(t, x)) dt, & \int_{\tilde{C}_{2}} (1 + \lambda_{-}(t, x)) dt, \\
\int_{\tilde{C}_{1}} |R_{i}(t, x)| dt, & \int_{\tilde{C}_{2}} |S_{i}(t, x)| dt \end{cases} \leq C(N_{1} + M_{1})$$
(3.32)

where \tilde{C}_1 stands for any given forward characteristic $\frac{dx}{dt} = \lambda_+$ in the domain $[0,T] \times R^+$;

 \tilde{C}_2 stands for any given backward characteristic $\frac{dx}{dt} = \lambda_-$ in the domain $[0,T] \times R^+$; L_1 stands for any given radial that has the slope 1 in the domain $[0,T] \times R^+$; L_2 stands for any given radial that has the slope -1 in the domain $[0,T] \times R^+$.

Home Page

Title Page

Page 46 of 55

Go Back

Full Screen

Close

★ The proof of Theorem 1.3

Let

$$\frac{D}{D_1 t} = \frac{\partial}{\partial t} + \frac{\partial}{\partial x} \tag{4.1}$$

Obviously,

$$\frac{D}{D_1 t} = T_1 + (1 - \lambda_+) \frac{\partial}{\partial x} \tag{4.2}$$

Thus, noting system (1.20)

$$\frac{D\lambda_{-}}{D_{1}t} = T_{1}\lambda_{-} + (1 - \lambda_{+})\frac{\partial\lambda_{-}}{\partial x}$$

$$\tag{4.3}$$

In the following we consider Equation (4.3), i.e.

$$\frac{D\lambda_{-}}{D_{1}t} = (1 - \lambda_{+})\frac{\partial\lambda_{-}}{\partial x} \tag{4.4}$$

For any fixed point $(t, x) \in D$, define $\xi = x - t$

Home Page

Title Page

Page 47 of 55

Go Back

Full Screen

Close

Case 1: $\xi \ge 0$, it follows Equation (4.4) that

$$\lambda_{-}(t,x) = \lambda_{-}(t,\xi+t) = \lambda_{-}(0,\xi) + \int_{0}^{t} (1-\lambda_{+}) \frac{\partial \lambda_{-}}{\partial x}(s,\xi+s) ds \qquad (4.5)$$

By (2.65) and Lemma 3.2, we have

$$\left| \int_{0}^{t} (1 - \lambda_{+}) \frac{\partial \lambda_{-}}{\partial x} (s, \xi + s) \right| ds$$

$$\leq W_{\infty}(\infty) \int_{0}^{+\infty} |1 - \lambda_{+}| (s, \xi + s) dx$$

$$\leq C(M + N)(M_{1} + N_{1}) \tag{4.6}$$

This implies that the integral $\int_0^t (1-\lambda_+) \frac{\partial \lambda_-}{\partial x}(s,\xi+s) ds$ converges uniformly for $\xi \in R^+$, On the other hand, noting that all functions in the right-hand side in Equation (4.5) are continuous with respect to ξ . Then, we observe that there exists a unique function $\tilde{\psi}(\xi) \in C^0(R^+)$ such that

$$\lambda_{-}(t,x) \longrightarrow \tilde{\psi}(x-t) \quad t \longrightarrow \infty$$
 (4.7)

Home Page

Title Page

Page 48 of 55

Go Back

Full Screen

Close

Case 2: $\xi \leq 0$, it follows Equation (4.5) that

$$\lambda_{-}(t,x) = \lambda_{-}(t,\xi+t) = \lambda_{-}(-\xi,0) + \int_{-\xi}^{t} (1-\lambda_{+}) \frac{\partial \lambda_{-}}{\partial x}(s,\xi+s) ds$$
 (4.8)

By (2.65) and Lemma 3.2, we can get

$$\int_{-\xi}^{t} (1 - \lambda_{+}) \frac{\partial \lambda_{-}}{\partial x} (s, \xi + s) ds$$

$$\leq W_{\infty}(\infty) \int_{-\xi}^{t} (1 - \lambda_{+}) (s, \xi + s) ds$$

$$\leq C(M + N)(M_{1} + N_{1}) \tag{4.9}$$

Then, we obtain that there exists a unique function $\bar{\psi}(\xi) \in C^0(R^-)$ such that

$$\lambda_{-}(t,x) \longrightarrow \bar{\psi}(x-t) \quad t \longrightarrow +\infty$$
 (4.10)

Home Page

Title Page

Go Back

Full Screen

Close

Case 3: When $\xi \longrightarrow 0$, notice that above cases we can get

$$\tilde{\psi}(\xi) \longrightarrow \tilde{\psi}(0) \text{ and } \bar{\psi}(\xi) \longrightarrow \bar{\psi}(0)$$
 (4.11)

Moreover

$$\tilde{\psi}(0) = \bar{\psi}(0) \tag{4.12}$$

We define

$$\psi(\xi) = \begin{cases} \tilde{\psi}(\xi), & \xi \in R^+; \\ \bar{\psi}(-\xi), & \xi \in R^-; \end{cases}$$

Hence from above we have proved the following lemma

Lemma 4.1 There exists a unique function $\psi(x-t) \in C^0(R)$, such that

$$\lambda_{-}(t,x) \longrightarrow \psi(x-t) \quad t \longrightarrow +\infty$$
 (4.13)

Home Page

Title Page

Go Back

Full Screen

Close

Remark 4.1 In the same way, we can obtain that there exists a unique function $\psi_i(x-t) \in C^0(R)$ such that

$$S_i(t,x) \longrightarrow \psi_i(x-t) \quad t \longrightarrow +\infty \quad i = 1,...,n$$
 (4.14)

Lemma 4.2 When $t \longrightarrow +\infty$, we have

$$\lambda_{+}(t,x) \longrightarrow 1$$
 (4.15)

$$R_i(t,x) \longrightarrow 0 \qquad i = 1,...,n$$
 (4.16)

uniformly for all $x \geq 0$.

Home Page

Title Page

Page 51 of 55

Go Back

Full Screen

Close

Noting (1.24),

$$\lim_{t \to \infty} u_i(t, x) = \lim_{t \to \infty} \frac{R_i(t, x) - S_i(t, x)}{\lambda_+(t, x) - \lambda_-(t, x)} = \lim_{t \to \infty} \frac{-\psi_i(x - t)}{1 - \psi(x - t)}$$
(4.17)

$$\lim_{t \to \infty} v_i(t, x) = \lim_{t \to \infty} \frac{\lambda_+ S_i(t, x) - \lambda_- R_i(t, x)}{\lambda_+(t, x) - \lambda_-(t, x)}$$

$$= \lim_{t \to \infty} \frac{\psi_i(x - t)}{1 - \psi(x - t)}$$
(4.18)

Then, when $x \ge 0$, we can get

$$\lim_{t \to \infty} u_i(t, x) = \frac{-\psi_i(x - t)}{1 - \psi(x - t)} \doteq \Phi_i(x - t) \quad i = 1, ..., n$$
 (4.19)

$$\lim_{t \to \infty} v_i(t, x) = \frac{\psi_i(x - t)}{1 - \psi(x - t)} \doteq -\Phi_i(x - t) \qquad i = 1, ..., n$$
 (4.20)

We next prove that $\Phi_i(\xi) \in C^1(R)$. Noting $\psi_i(\xi), \psi(\xi) \in C^0(R)$, we need to show that $d(\psi_i(\xi))/d\xi, d(\psi(\xi))/d\xi \in C^0(R)$. It suffices to show that $\psi(\xi), \psi_i(\xi) \in C^1(R)$.

In the following we only prove $\psi(\xi) \in C^1(R)$

Home Page

Title Page

Page 52 of 55

Go Back

Full Screen

Close

Lemma 4.3 Under the assumptions of Theorem 1.3, the limit

$$\lim_{t \to \infty} \frac{\partial \lambda_{-}}{\partial x}(t, x_{1}(t, \beta)) \doteq \psi^{*}(\beta)$$
(4.21)

exists and is continuous. Moreover

$$|\psi^*(\beta)| \le C(M+N)(N_2 + M_2 + M_1 N) \tag{4.22}$$

Lemma 4.4 The limit

$$\lim_{t \to \infty} \frac{\partial \lambda_{-}}{\partial x}(t, \xi + t)$$

exists and is continuous with respect to ξ .

Lemma 4.5

$$\frac{d\psi(\xi)}{d\xi} = \lim_{t \to \infty} \frac{\partial \lambda_{-}}{\partial x} (t, \xi + t). \tag{4.65}$$

Home Page

Title Page

Page 53 of 55

Go Back

Full Screen

Close

Remark 4.3 In the similar way, we also can prove

$$\lim_{t \to \infty} \frac{\partial S_i}{\partial x}(t, \xi + t) = \frac{d\psi_i(\xi)}{d\xi}$$
(4.69)

Lemma 4.6

$$\lim_{t \to \infty} \frac{\partial \lambda_{-}}{\partial x}(t, \xi + t) = \psi^{*}(\vartheta(\xi)) \tag{4.70}$$

is continuous in R. Moreover

$$\frac{d\psi(\xi)}{d\xi} = \psi^*(\vartheta(\xi)) \tag{4.71}$$

Remark 4.4 By the same method, we obtain that $\frac{\partial S_i}{\partial x}(t, \xi + t)$ have the similar conclusion. Moreover

$$\frac{d\psi_i(\xi)}{d\xi} = \psi_i^*(\vartheta(\xi)) \tag{4.75}$$

Home Page

Title Page

1 age 54 61 55

Go Back

Full Screen

Close

Home Page

Title Page

Page 55 of 55

Go Back

Full Screen

Close