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equation of time-like extremal surfaces in
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We denote (xg, 71, ..., T,+1) @ point in the (n + 1) + 1 dimensional Minkowski
space endorsed with the metric

ds®* = —dx3 +da? + ... + d:z:fHrl
Let

rg=1t,11 =2, = P1(t,x), ..., Tpi1 = Ou(t, )

be a two dimensional time like surface. Then the induced metric on the surface
1S

d.s*> = —dt* + dz? 4+ d(¢1)? + ... + d(¢n)?
= —(1 = (¢))dt* + (1 + (¢2)*)da® + 26 - ppdadt

where ¢ = (¢1, ..., 0n)1, ¢; or ¢, denote partial dedifferentiation with respect
to ¢ or x respectively and - denotes inner product in R". Thus, it is easy to see
that the area of the surface is

// \/1 o (¢t)2 + (¢x)2 o (¢t>2(¢x)2 + (Cbt : ng;)?dajdt
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An extremal surface is defined to be the extremal point of the area functional,

hence it satisfies the Euler-Lagrange equations

(14 (02)*) ot — (&1 - D) Pa
Vl — (¢1)? cbx) (61)2(02)? + (1 - ha)?

2 2 2%
% 1 —(¢1)* 4 (¢2)* = (04)*(¢2)” + (¢4 - ¥2)
We consider the Cauchy problem for system (4) with initial data

gb(O?x) = h(:L’), ¢t<07x> — g<$)

where / and g are vector valued C'! functions.

)t
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Let
U = gbx y U= ¢t
Then, Eq.(4) can be equivalently rewritten as a first order systems of conserva-
tion laws for the unknown U (t, x) = (u(t, x),v(t, x)) as follows
ur — vy =0
( (1+u?)v— (u-v)u - ( (1 —vHu+ (u-v)v
\/1—v2+u2—02u2+(u-v)2t V1—v2+u?— v+ (u-v)?

The initial condition then becomes (u(0, x),v(0,x)) = Up(z) = (h'(z), g(z)).
This is an interesting model in Lorentian geometry.

)J;:O
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In [17] they showed that system can be reduced to

U — v, =0
2(u - v) 1 — v?

x2  Treg =0

V¢ —

They found that it enjoys many interesting properties:nonstrictly hyperbolic-
ity, constant multiplicity of eigenvalues, linear degeneracy of all characteristic
fields, richness, etc. The system have two n-constant multiple eigenvalues:

1
Ay = T u2(—(u -v) £ /A (u,v))

where A(u,v) =1 —v? + u? — u*v* + (u - v)? > 0. They also proved

AL(t,x)| <1
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Let
R, =v; + A\yu;, (Z: 1,...,n)
SZ':UZ'—I—)\_’LLZ', (Z: 1,...,71)

then they satisfies the following systems

(O + A 9hs =0
R, + X\ 0,R, =0 (i=1,...,n)
N+ AiOA =0
(8Si+ A 0:Si =0 (i=1,..,n)

-

t=0:2:(0,2) =As(x),A_(0,2) = A_(x),
Ri(0,2) = R}(z), S5;(0,3) = 5(z)

Then it was proved that above system admits a global classical solution for all
t € R*, provided that Uy is C! and the strictly hyperbolic condition

0 = inf A (x) —supA_(x) >0 (5)

1s satisfied.

_ Ri(t,x) - Si(t, z) B
wilt, z) = A (t,z) — A_(t,x) vilt, ) =
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Theorem A. Suppose that (5) is satisfied, then the cauchy problem (4) admits a
unique global C? solution ¢ = ¢(t, ) on R™ x R. Moreover, it holds that

N(@o(t, ), ¢1(t,x)) >0, V(t,z) € R* x R
Under the following assumptions:

sup{| 1" (z)| + |¢'(z)[} = M < oo,

r€ER

/_ i [P ()] + g(z)|dz = Ny < o0

o0

400
/ ()] + | (@)|dz = Ny < oo

o0

My = sup{|1'(z)| + |g(=)[}

zeR
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Firstly we consider the Cauchy problem:

e Consider Cauchy problem of the first order general quasilinear hyperbolic

systems

ou ou

— + A(lu)— =B

L+ A(w)s" = B(u)

w(0,z) = f(z)

#The existence of the global classical solutions: __Home page |
Bressan [1]Indiana University Mathamatics Journal (1988) Tite Page |
Li [2] (published in the United States with John Wiley & Sons, 1994.) «l»n
L1, Zhou and Kong [3] Comm.PDE (1994). [4]Nonl.Anal.(1997)
Kong [5], IR
Zhou [6] Chin. Ann. Math. (2004) Page 90155 |
4 Asymptotic behavior:
Kong and Yang [7] Comm in Part Diff Eqgs. (2003) __rusen |
Dai and Kong [8] Chin. Ann. Math. B (2006), [9] (preprint). oo |
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% % In the following we consider the following diagonalizable quasilinear
hyperbolic systems

o TN WG =

where © = (uy, ..., u,)! is the unknown vector-valued function of (¢, 7). \;(u)

0 (1)

is given C? vector-valued function of u and is linearly degenerate, i.e.

oNi(u) _

and the system (1) is strictly hyperbolic, 1.e.

Suppose that there exists a positive constant ¢ such that,

)\Hl(u) —)\Z'(U) 25, 1= 1,...,n— 1.
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Consider the cauchy problem for the system (1) with the following initial data
t=0: u= f(z)

where f(z) is a C! vector-valued function of x. The global existence of the
classical solutions is well-known see Li [2].

Home Page

Title Page

Page 11 of 55

Go Back

Full Screen

Close

Quit



http://pankejia.yculblog.com

DEPARTMENT AND INSTITUTE Of MATHEMATICS

Assumptions
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Theorem 1.1. Under the assumptions of above, there exists a unique C'* vector-
valued function ¢(z) = (¢1(z), ..., ¢,(z))? such that,

u(t,x) — Z di(x — A (0)t)e;, t— oo
i=1
where
ei=(0,...,1%,0,...,0)T

Moreover, ¢;(z)(i = 1,...,n) is global Lipschitz continuous. Furthermore, If
system (1) is rich and the derivative of the initial data f’(z) isglobal p-holder

continuous, where 0 < p < 1, i.e. there exists a positive constant x independent
of a, § € R such that,

() = f'(B)] < Kla = BI°
Then ¢(x) (i = 1, ..., n) satisfies

[¢i(@) = ¢i(B)] < CM (|l — BIP + | — B])
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Lemma 4.1. Under the assumptions above, the limit
A(t,z) — Pz —1t), t — o0
exists and for any «, § € R, we have
[(e) = (8)] < CMla =5
Moreover,
()] <1

Remark 4.1. Using the similar method, we can get the following estimate

Si(t,z) — @(m —t), exist and |ggl(04) — ggz(ﬁ)| < CM|a — 8|

A (t,z) — Y(x + 1), existand |[¢(a) — (8)| < CM|a — g

Ri(t,x) — ¢i(x + 1), existand |¢;(a) — ¢5(8)| < CM|a — f|

Moreover,
()| < 1, |gi(@)], |¢i()| < 1+ CMN,
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Then

lim w;(¢t,z) = lim al i) — @@ =)
= = (et 1) — 9la— 1)
lim v;(¢t,z) = lim ACRRY = V) — %@ —)bilz+1)
i =TT gt ) gD
Then, we can get
when x>0
: ' A —Nz‘($—t> L oV -
tﬁnoouz(t,x) = 1;@ —y =®;(x—t), i=1,...,n
. Bilz=t) . o
tEnoovZ(t,x) = T 99 = —®;(x—t), i=1,..,n
when z <0
. g+t L g
th_r)nooui(t,x) =Tt Ui(x+t), i=1,..,n
iz + 1)

=V, (x+1t), i=1,..,n

li i(t,x) =
tgnoov< 7) 1+ ¢¥(x+1)
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So we can conclude

wi(t,x) — Pi(x —t) + V;(x + 1)

Home Page

vi(t,x) — —Qi(z —t) + V;(z + ) Tite Page

We also have conclusion that ®;(«) and W,;(«)(¢ = 1,...,n) are Lipschitz

continuous.
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Theorem 1.2. Under the assumptions of above, furthermore, suppose ini-
tial data satisfies (5). There exist unique C' vector-valued functions ®(z) =
(®1(2), ..., Dp(x)) and ¥(x) = (Vy(x), ..., U, (x)) such that,

(Pi)e — Pi(x —t) +Vi(x+t), t— 00 i=1,...n

(fi)e — —Pi(x —t)+ V(x+t) t — o0 i=1,...n

Moreover ®;(x) and V;(x)(i = 1,...,2n) are global Lipschitz continuous. Ex-
actly, there exists a positive constant M only depending on M, Ny, Ns. It holds
that

|®i(a) — @i(8)] < CM|o - |

|Wi(a) — Ti(B)] < CM|a — 4]

Furthermore, If the initial data 2", ¢’ are global p-hélder (0 < p < 1) continu-
ous, i.e. there exists a positive constant « independent of o, 3 € R such that,

[P () = ' (B)] + |g'(er) — g'(B)] < kla — B
then, ®}(z) and W/ (z) satisfy

[@(cr) — @i(B)] + [¥i(@) — Ti(B)| < CrMP’la — pI° + CM|a — 5
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% % Initial-boundary value problem for the equation of time-like extremal
surface in Minkowski space
We only consider the initial-boundary value problem with Neumann boundary

Condition f Home Page

v_2(u-v)v _1—1}2
T 1+ T 1+ 42
t=0: u= f'(x),v=g(x)
r=0: u=h(t)

Title Page

u, =0

(1.16)
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Suppose that Uy, h are C! functions with bounded C'* norm and the initial con-
ditions satisty

sup A_(z2) < —a<0<b< inf A(x) (1.25)

rERT TERT

Without loss of generality, we assume a < b. (Otherwise, we can always replace
a by a smaller positive number). If the Neumann boundary data is sufficiently

small, for example
b—a

\h(t)] < (1.26)

Then we have the following global existence result for the initial-boundary
value problem (1.5)-(1.7)
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Theorem 1.1 Suppose that the initial data and Neumann boundary data satisfy

(1.25), (1.26), the conditions of C? compatibility (1.9) are satisfied, then the _ Homerage |
initial-boundary value problem (1.5)-(1.7) admits a unique global C? solution Tite Page |

®» = ¢(t,x)on R™ x RT. RN
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Similarly, we suppose Uy, H' are C! functions with bounded C'! norm and the

initial conditions satisfy

sup A_(z) < —a<0<b< inf A(x)
rERT TrERT

Without loss of generality, we assume a < b. If the first derivative of Dirichlet

boundary data is sufficiently small, for example
|H'(t)| <b—a
The conditions of C? compatibility are satisfied. i.e.

f(0) = H(0), H'(0) = g(0)

and
7 Qf/(()) : 9(0) / 1— 92(0)
O e Y T T o

Then we have the following global existence result

f(0)=0

(1.27)

(1.28)

(1.29)
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Theorem 1.2 Suppose the above assumptions (1.25) and (1.27)-(1.29) are
satisfied, then the initial-boundary value problem (1.5), (1.6) and (1.8) admits a
unique global C? solution ¢ = ¢(¢,x) on RT x RT.

Home Page

Title Page

Page 22 of 55

Go Back

Full Screen

Close

Quit



http://pankejia.yculblog.com

If we also suppose that the initial and boundary datum satisfy the following

assumptions:
sup {|f"(z)| + |¢' ()|} = N < o0

TERT

—+00
LAIﬂM+MMmiM<w

sup {|f'(z)| + |g(=)[} = No

TERT

sup {|1'(t)[} = M < o0

teRt

+00
/ h(8)|dt = M; < oo
0

+00
/ |h/(t)|dt = My, < o0
0

(1.30)

(1.31)

(1.32)
(1.33)

(1.34)
(1.35)

(1.36)

Based on the existence of the global classical solutions, we also prove the

following Theorem:
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Theorem 1.3 Under the assumptions of Theorem 1.1 and above, there exists a bome Page_|
unique C! vector-valued function ®(z) = (®1(x), ..., ®,(x)) such that =]

((@i)z, (9i)t) — (Bi(z — 1), —Pi(z — 1)) i=1,..,m (1.37) R
||

pago 240155 |
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Similarly, under the assumptions that

sup {|f"(z)| + |¢'(@)|} = N < o0

reRT
+00
(/|ﬂm+mmm:M<m
0

+00
A @) + ¢ @)lde = Ny < o0

sup {|f'(z)] + [g()[} = No

TERT
sup{|H"(t)|} = M < oo (1.38)
teRt
400
/ [ (8)|dt = M < oo (1.39)
0
+00
/ ()|t = My < oo (1.40)
0

We have the following Theorem
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Theorem 1.4 Under the assumptions of Theorem 1.2 and above, there exists a

Home Page

unique C! vector-valued function ¥ (z) = (¥y(x), ..., ¥,,(x)) such that

Title Page

((Di)as (i)t) — (Vi(x —¢), —Vi(z —1t)) i=1,...,n
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% Key idea of the proof
Lemma 2.1 Under the assumptions of (1.9), (1.25) and (1.26), system (1.20) is rlome Fage
strictly hyperbolicity. Furthermore, on the domain D we have Title Page

A(t,x) < —a<0<b< A (t o) (2.3)
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Proof: For any fixed (t,z) € D, we draw the forward characteristic

C' : x = z1(t) through this point. There are only two possibilities:

Case 1: The forward characteristic C; : « = (¢, 3) intersects x axis at a point
(0, ). By the second equation of system (2.1), A_(¢, x) is a constant along any
given forward characteristic, then we have

A(t,x) = A(B) (2.4)

Noting (1.25)
A(t,x) < —a V(t,z)€ED (2.5)

In the similar way, we draw the backward characteristic Cy : = x5(t, @)
intersects = axis at a point (0, ). Along any given backward characteristic

A+ (t, x) is a constant
At ) = Ay(a) (2.6)

Then
b< A (tx) V(t,z)€ D (2.7)
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Case 2: The forward characteristic C; : & = x;(t) intersects ¢ axis at a point
(+,0) and the backward characteristic Cy : © = x5(t) passing through (v, 0)
intersects  axis at a point (0, o), where Cy : 2 = (1) satisfies

da;;t(t) = \_(t, 12(t, ), 72(0,0) =
Similarly, we can get
A_(t,z) = A_(v,0) o
0 (2.9)
Then -

A(t,z) + A(a) = e

Title Page
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Let 6 € [0, 7] is the angle between vectors h and v. We have h - v = |hl|v| cos 6.

Then, Equation (2.10) can be rewritten as

(1 + |h))As(a) + |hl|v] cos 6 = \/1 — v + |h|> — [v]?|k[? + |h|2[v]? cos? 0
(2.13)
Then

(1+|R)*)2A% (@) +(1+|A1)|v*+2(1+|R)*) Ay (a)|h]|v| cos @ = 1+|h|* (2.14)
Dividing (2.14) by 1 + |h|? leads to
(1 + |h|)A2 () + [v]* + 2A, (@) |h||v] cos 8 = 1 (2.15)
Noting 6 € [0, 7|, then |cosf| < 1
(1 + [B)A2 (0) + [ol? — 24 (a) Alo] < 1

(lo] = [hA+(@)* < 1 — Ai(e)

Home Page |
Title Page |

Page 30 of 55 |
e
Full Screen |
Close |

Quit |


http://pankejia.yculblog.com

Notice that the initial data satisfies (1.25), we can get
o] < Ai(a)|h] +4/1— A% (@)

Thus
[v| < |h[+1

By Equation (2.12), we have

2|h||v| cos b

—)\_(t,ﬂf) - A_|_(Oé> + 14+ |h|2

2| |v|

> A -

. —I—(a> 1—|—|h|2

Noting (1.25) and (2.17)
2|h|([h| +1)
—A_(t >b—

On the other hand, the Neumann boundary data satisfies (1.26), then

2|h|(|h| + 1)
<b-—
1z =
Therefore
A_(t,x) < —a

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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Lemma 2.2 Let R;, S; be as system (1.20), then

{lR:(t, 2)|, 1St )} < C

where C' is a positive constant only depending on a, b, N.

DEPARTMENT AND INSTITUTE Of MATHEMATICS
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To estimate the first derivatives of the solutions of system (1.20), we consider a

linear system
as i
=t w(l,z)5-=0
o (t,2) ke (2.32)
= 2tz =0

where 2, w are regarded as given smooth functions. However, z, w are not arbi-

trary given. S = 2z, Y = w itself is a solution of system(2.32). Assume that on

the domain under consideration
w(t,x) —z(t,z) > >0 (2.33)

where 0 is positive constant. Then w and z are constant along characteristics
respectively. Under these assumptions, system (2.32) enjoys the following
remarkable properties:
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Lemma 2.3 Let

0 0 0 0
Then
W= T, — T (2.35)

For any Lipschitz continuous functions F and G, System (1.20) implies the con-

servation laws:

G0 e T

Home Page |
Title Page |

Page 34 of 55 |
Full Screen |
Close |
Quit |


http://pankejia.yculblog.com

For any fixed T > 0, we introduce

O\, AN OR; 05
Weo(T) = sup sup {|=—=(t,2), |5 =t 2)|, | 5=t ), |5t )|} —

0<t<Tzer+ O 7
(2 i 39) Title Page |

Lemma 2.4 Under the assumptions of Theorem 1.1, there exists a positive con-

stant C' only depending on Ny, a, b such that

WOO(T) S C(M —|_ N) (240) Page 35 of 55 |
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Proof: For any fixed point (¢,z) € [0,7] x R", in the following we estimate
| OA_(t,x) ’

ox

Noting the third equation of system (1.20) and (2.35), (2.41), (2.42)

TiA_(t,z) =0 (2.49)
T1<T1 i TQ))\_(t, SL') =0 (250)
(% AL, x)%)()\+(t, ) — A_(t, @)W ~0 (2.51)

A (t,z)—=A_(t,2)) mé—g’x) is a constant along any given forward characteristic.
There are only the following two cases:
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Case 1: The forward characteristic C : & = z;(t, 3) intersects  axis at a point
(0, 8). By (2.51), we have

OA_(t,x)

5 = (+(6) = A-(8)AZ(H) (2.52)

(At @) = A(t,2))

Noting Lemma 2.1, we have

283)) < o ()
aA_ (6) /! 8/\— (/6) /
< C[(;;l}g! I DIf(8)] + (;EUJQ 99 D1g (B)] (2.53)
< C;;l}g(lf”(ﬁ)l +19'(B)) < CN (2.54)

where C only depends on Ny, a, b.
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Case 2: The forward characteristic C : & = x1(t) intersects t axis at a point
(,0) and the backward characteristic Cy : & = x5(t, o) passing through (-, 0)
intersects x axis at a point (0, «). Then, we have

OA_(t,x) OA_(7,0)
A+t 2) = A-(t,2)) = — = (A+(7,0) = A-(7,0))——>—  (2.55)
OA_(t, ) OA_(v,0)
= <o (2.56)
Noting the third equation of system (1.20), we can get
OA_(t,x) OA_(7,0)
— | < 0|—= 2.
& - (257)
Noting (2.8), (2.9) and (2.12) we have
OA_(t,0) 0 ,2(h-v) ' do
—— | < C(]l= A — 2.
=1 S Clg )l + W@l ) (2.58)
Noting Cy : © = (1) satisfies
dx(t)
= A_(t 1
dt (8, 72(t, a)) (2.59)

t=0: 29(0,0) =«
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Noting C : © = x5(t) satisfies

dx(t)
= \_(t il
dt &, 22(,)) (2.59)
t=0: x9(0,) =
Therefore OA_(1.0)
= | < (\h’HvIHhH |+\A’( ) (2.60)
Noticing
Then, by the estimate obtained in the previous case we can estimate | 7|, thus
OA_(t,0)
= 1 < CUN| + RN + [ ()] +1g'(@)]) (2.61)
Therefore (1
y%\ < C(M + N) (2.62)
x
By the same method, we can get
0S;(t,
|%\ < C(M + N) (2.64)
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Proof of Theorem 1.1 Under the assumptions of Theorem 1.1, by Lemma 2.1-
2.4, on the domain D

A<l [ Rall, NISielly < C(M + N +1)

Ay (t, ) = A_(t,z)) >b+a

Noting (1.24), we can get uniform a priori estimate of C* norm of u and v. i.e.
system (1.16) have the global C! solutions. Then, the system (1.5)-(1.7) have
global C? solutions.
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% Uniform a priori estimate For any fixed 7' > 0, we introduce

+00 +00

Wh(T) = max sup { ]ai(t x)|dx, / |ai(t x)|dx

Z:L'-w”Ogth 0 0

T OR; T 98,

|1t [ G ) (3.1

WA(T) = max { A (4 )t sup | |2 )t
st Lo A | o
sup (t, x)|dt, sup 95 (t,z)|dt} (3.2)
C’l Cl C’Q ~2 81‘

where C; stands for any given forward characteristic Z—f = A, in the domain
0,T] x RT;

C, stands for any given backward characteristic d‘r = A_ in the domain [0, 7] x
R*.
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Lemma 3.1 Under the assumptions of Theorem 1.3, there exists a positive
constant C' only depending on Ny, a, b such that, the following estimates hold:

Wi(T), W1(T) < C(Ny + My + MiN) (3.3)
Proof: Differentiating the system (1.20) with respect to . We have

( O OA-

(A2 ) 0
Oz (3.4)

We rewrite (3.5) as

, A
d|a—_ (dx — Apdt) =0

N
d|a i

GR

ox
(95

0:6

(dz — A_dt) =0
(3.6)

(de—Adt) =0 (i=1,..n)

(dz—Apdt) =0 (i=1,..n)
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In the following we only prove

ON_
ox

(t {E)dt < C(Mz + N2 + MlN) (316)

There are only three possibilities:

Case 1: For any fixed a € R, let Cy: = x5(t, ) stands for any given
backward characteristic, passing through the point A(0, «) on the x axis and
intersecting t = T at a point P. We draw a forward characteristic C; : z =
x1(t, B) from P downward and intersects x axis at a point B(0, 3).

Then, we integrate Equation (3.15) in the region AP B to get

[ Ay — )|—\ (t,z)dt = / A" (z)|dx (3.17)
Co
Notice that Lemma 2.1 and (2.2), (3.2), we can get

i |%\(t7$)dt < CWh(0) < CN, (3.18)
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Case 2: For any fixed a € R*, let Cy: o = x5(t,a) stands for any given

backward characteristic, passing through the point A(0, «) on the x axis and

intersecting t = 7T at a point P. We draw a backward characteristic C : = =

x1(t) from P downward and intersects ¢ axis at a point B(~, 0).

Then, we integrate Equation (3.15) in the region PAOB to get

/ Ay — )\_)|ai|(t,a:)dt = /7 /\+|ai(t,0)|dt - /a A" (z)|dz (3.19)
ox 0 ox 0

C

Using the third equation of system (1.20) and Lemma 2.1, we have

/ |%\(t,x)dtg0(/07\%|(t,o)dt+/oa|A’_(a;)\dx) (3.20)

Cs

Then, noting (2.61)

OX_ OO O oo
- < 4
[ Gt < o[ 10+ [N @l
< C(M2+N2—|—M1N) (321)
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Case 3: For any fixed o € R*, let Co: & = x»(t,a) stands for any given
backward characteristic, passing through the point A(0, «) on the x axis and
intersecting ¢ axis at a point B(+, 0).

Then, we integrate equation (3.15) in the region AO B to get

/OV(M—)\—)!%Kt,x)dt:/oa !A’_(x)|da:+/07)\+|%\(t,0)dt (3.22)

Similarly, we can get

|15 (t,:c)dtgC(/Oa|A’_(:E)\da:+/0fy|%\(t,0)dt)

G,

Then -
|5 1@ 2)dt < C(M; + Nz + MiN) (3.23)
Cy
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Lemma 3.2 Under the assumptions of Theorem 1.3, we have

{ (1—)\+)(t,x)dt,/L (14 M_(t,2))dt,

Rt )ldt, | |Sit, 2)|dE} < C(Ny + My) (3.31)
f ~(1—>\+(t,:z:))dt,/~ (1+ X (t,2))dt.
& C.
/ Ri(t, 2)|dt, / Si(t, 2)|dt} < C(Ny + M) (3.32)
4 Cs

where C; stands for any given forward characteristic Cfi—f = A, in the domain
0,7T] x R,

C, stands for any given backward characteristic ‘fl—f = A_ in the domain
[0,7] x R"; Ly stands for any given radial that has the slope 1 in the domain
[0, 7] x R*; Ly stands for any given radial that has the slope —1 in the domain

[0,7] x RT.
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% The proof of Theorem 1.3
Let

D 0 0
— = — 4 —
Obviously,
D 0
— =T 1—Ap)—
Dlt 1+ ( +)8x
Thus, noting system (1.20)
D)_ OM_
=T _+(1—-Ap)——
Dlt ! + ( +) ox
In the following we consider Equation (4.3), i.e.
DM\_ oM_
=(1—-Ap)——
Dlt ( +) ox

For any fixed point (¢,2) € D, define { =z — t

(4.1)

(4.2)

(4.3)

(4.4)
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Case 1: £ > 0, it follows Equation (4.4) that

0N

kﬁﬂﬂ:AJt§+ﬂ:A_m£%+A(L—XQ5;@£+£MS (4.5)

By (2.65) and Lemma 3.2, we have
t
A
[a=r0T s+ ss

< Wan(o0) /Omu—ms,us)dx
< C(M + N)(Mi + N) (4.6)

This implies that the integral fot (1 — )\+)%(s,§ + s)ds converges uniformly
for £ € R™, On the other hand, noting that all functions in the right-hand side
in Equation (4.5) are continuous with respect to £&. Then, we observe that there
exists a unique function ¢(¢) € C°(R*) such that

A(t,z) — Pz —t) t — o0 (4.7)
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Case 2: £ < 0, it follows Equation (4.5) that

! O

A(mw—x@@+w—x(ﬁunﬁ/y—w95;@g+gw (4.8)

By (2.65) and Lemma 3.2, we can get

t OA_
/_5(1 — M) (8,6 + 5)ds

< Wio(00) / (120564 5)ds
< O(M + N)(M; + Ny) (4.9)

Then,we obtain that there exists a unique function ¢(¢) € C°(R™) such that

M(t,z) — Yz —t) t— 400 (4.10)
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Case 3: When & — 0, notice that above cases we can get

Y(§) — ¥(0) and ¥(§) — ¥(0) (4.11)
Moreover

$(0) = ¢(0) (4.12)
We define y —Mme —
w(f) _ 2%(5)7 5 c R+, Title Page |
Y(=¢), §€ R | » |
Hence from above we have proved the following lemma ||
Page 50 of 55 |
Lemma 4.1 There exists a unique function ¢)(z — t) € C(R), such that Gogack |
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Remark 4.1 In the same way, we can obtain that there exists a unique function
Vi(z —t) € C°(R) such that

Si(t,x) — Yi(x —t) t— 400 i=1,...,n (4.14)
Lemma 4.2 When t — +o00, we have
Ay (t,x) — 1 (4.15)

Ri(t,z) — 0 i=1,...,n (4.16)

uniformly for all x > 0.
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Noting (1.24),

lim w(t,z) = 1 - 4.17
A ) = ) =) T ga—f)
t—o0 t—00 )\+(t, JI) — )\_(t, 33)
. Vi(z — 1)
=2 4.1
tgnool—w(x—t) (4.18)
Then, when z > 0, we can get
lim_wi(t, ) = 1‘_%@‘_% SOz —t) i=1,..n (4.19)
i(r—1 . .
lim v;(t,x) = Yile = ¥) = —Q;(x—t) i=1,..,n (4.20)

AT - —1)
We next prove that ®;(£) € CY(R). Noting v;(€),4(¢) € C°(R), we need
to show that d(v;(€))/d¢, d((€))/dE € C°(R). Tt suffices to show that

¥(£),%i(§) € CHR).
In the following we only prove 1(£) € C1(R)
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Lemma 4.3 Under the assumptions of Theorem 1.3, the limit

lim ai(t,xl(t,ﬂ)) =" (B)

t—so00 O

exists and 1s continuous. Moreover
1" (B)] < C(M + N)(Ng + Mz + MiN)

Lemma 4.4 The limit

O\
lim —(¢ t
Jim ——(t,¢ +1)
exists and is continuous with respect to &.
Lemma 4.5
dy(€) 2

s T (GG

(4.21)
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Remark 4.3 In the similar way, we also can prove

. 05 _di(§)
Jim (€ 1) = FH0 (4.69)
Lemma 4.6 I\
Jim (€ +1) = 9" (9(6) (4.70)
1s continuous in K. Moreover
(&) .
R 6) (4.7)

Remark 4.4 By the same method, we obtain that %ii (t,€ + t) have the similar

conclusion. Moreover i(6)
e = ) (4.75)

Home Page

Title Page

Page 54 of 55

Go Back

Full Screen

Close

Quit



http://pankejia.yculblog.com

Thank You
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